Kernels of L-functions of cusp forms

We give a new expression for the inner product of two kernel functions associated to a cusp form. Among other applications, it yields an extension of a formula of Kohnen and Zagier, and another proof of Manin’s Periods Theorem. Cohen’s representation of these kernels as series is also generalized.

[1]  H. Iwaniec Spectral methods of automorphic forms , 2002 .

[2]  Jay Jorgenson,et al.  Unipotent vector bundles and higher-order non-holomorphic Eisenstein series , 2006, math/0611739.

[3]  Don Zagier,et al.  Introduction to modular forms , 1992 .

[4]  SINAI ROBINS EASY PROOFS OF RIEMANN ’ S FUNCTIONAL EQUATION FOR ζ ( s ) AND OF LIPSCHITZ SUMMATION MARVIN KNOPP AND , 2001 .

[5]  J. Sturm PROJECTIONS OF C ° ° AUTOMORPHIC FORMS , 2007 .

[6]  IDENTITIES FROM THE HOLOMORPHIC PROJECTION OF MODULAR FORMS 1 , 2002 .

[7]  Ju. Manin PERIODS OF PARABOLIC FORMS AND p-ADIC HECKE SERIES , 1973 .

[8]  S. Lang,et al.  Introduction to Modular Forms , 2001 .

[9]  D. Zagier Modular forms whose fourier coefficients involve zeta-functions of quadratic fields , 1977 .

[10]  Don Zagier,et al.  Elliptic modular forms and their applications. , 2008 .

[11]  J. Jorgenson,et al.  Convolution Dirichlet Series and a Kronecker Limit Formula for Second-Order Eisenstein Series , 2004, Nagoya Mathematical Journal.

[12]  J. Sturm Projections of $C^\infty$ automorphic forms , 1980 .

[13]  O. Imamoglu,et al.  Parabolic, hyperbolic and elliptic Poincar\'e series , 2008, 0806.4398.

[14]  Douglas Niebur A formula for Ramanujan's $\tau$-function , 1975 .

[15]  Hans Petersson,et al.  Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art , 1941 .

[16]  Jannis A. Antoniadis Modulformen auf Γ0(N) mit rationalen Periodenmit rationalen Perioden , 1992 .

[17]  Mathematische,et al.  Heegner Points and Derivatives of L-Series. II , 2005 .

[18]  Don Zagier,et al.  The 1-2-3 of Modular Forms , 2008 .

[19]  Henryk Iwaniec,et al.  Topics in classical automorphic forms , 1997 .

[20]  Shinji Fukuhara Explicit formulas for Hecke operators on cusp forms, Dedekind symbols and period polynomials , 2005 .

[21]  Yifan Yang,et al.  Period polynomials and explicit formulas for Hecke operators on Γ0(2) , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  G. Shimura The special values of the zeta functions associated with cusp forms , 1976 .

[23]  Alain Robert,et al.  Introduction to modular forms , 1976 .

[24]  D. Zagier Periods of modular forms and Jacobi theta functions , 1991 .

[25]  D. Lanphier Combinatorics of Maass–Shimura operators , 2008 .

[26]  Period polynomials and explicit formulas for Hecke operators on \Gamma_0(2) , 2006, math/0608372.