Kernels of L-functions of cusp forms
暂无分享,去创建一个
[1] H. Iwaniec. Spectral methods of automorphic forms , 2002 .
[2] Jay Jorgenson,et al. Unipotent vector bundles and higher-order non-holomorphic Eisenstein series , 2006, math/0611739.
[3] Don Zagier,et al. Introduction to modular forms , 1992 .
[4] SINAI ROBINS. EASY PROOFS OF RIEMANN ’ S FUNCTIONAL EQUATION FOR ζ ( s ) AND OF LIPSCHITZ SUMMATION MARVIN KNOPP AND , 2001 .
[5] J. Sturm. PROJECTIONS OF C ° ° AUTOMORPHIC FORMS , 2007 .
[6] IDENTITIES FROM THE HOLOMORPHIC PROJECTION OF MODULAR FORMS 1 , 2002 .
[7] Ju. Manin. PERIODS OF PARABOLIC FORMS AND p-ADIC HECKE SERIES , 1973 .
[8] S. Lang,et al. Introduction to Modular Forms , 2001 .
[9] D. Zagier. Modular forms whose fourier coefficients involve zeta-functions of quadratic fields , 1977 .
[10] Don Zagier,et al. Elliptic modular forms and their applications. , 2008 .
[11] J. Jorgenson,et al. Convolution Dirichlet Series and a Kronecker Limit Formula for Second-Order Eisenstein Series , 2004, Nagoya Mathematical Journal.
[12] J. Sturm. Projections of $C^\infty$ automorphic forms , 1980 .
[13] O. Imamoglu,et al. Parabolic, hyperbolic and elliptic Poincar\'e series , 2008, 0806.4398.
[14] Douglas Niebur. A formula for Ramanujan's $\tau$-function , 1975 .
[15] Hans Petersson,et al. Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art , 1941 .
[16] Jannis A. Antoniadis. Modulformen auf Γ0(N) mit rationalen Periodenmit rationalen Perioden , 1992 .
[17] Mathematische,et al. Heegner Points and Derivatives of L-Series. II , 2005 .
[18] Don Zagier,et al. The 1-2-3 of Modular Forms , 2008 .
[19] Henryk Iwaniec,et al. Topics in classical automorphic forms , 1997 .
[20] Shinji Fukuhara. Explicit formulas for Hecke operators on cusp forms, Dedekind symbols and period polynomials , 2005 .
[21] Yifan Yang,et al. Period polynomials and explicit formulas for Hecke operators on Γ0(2) , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.
[22] G. Shimura. The special values of the zeta functions associated with cusp forms , 1976 .
[23] Alain Robert,et al. Introduction to modular forms , 1976 .
[24] D. Zagier. Periods of modular forms and Jacobi theta functions , 1991 .
[25] D. Lanphier. Combinatorics of Maass–Shimura operators , 2008 .
[26] Period polynomials and explicit formulas for Hecke operators on \Gamma_0(2) , 2006, math/0608372.