Matrix 3-Lie superalgebras and BRST supersymmetry
暂无分享,去创建一个
[1] V. Abramov,et al. Classification of Low Dimensional 3-Lie Superalgebras , 2015, 1511.08304.
[2] Sergei Silvestrov,et al. Engineering Mathematics II : Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization , 2016 .
[3] V. Abramov. Super 3-Lie Algebras Induced by Super Lie Algebras , 2014, 1410.5923.
[4] S. Silvestrov,et al. Structure and Cohomology of 3-Lie Algebras Induced by Lie Algebras , 2013, 1312.7599.
[5] Christian Sämann,et al. M-brane models from non-abelian gerbes , 2012, 1203.5757.
[6] A. Makhlouf,et al. Representations and cohomology of n-ary multiplicative Hom–Nambu–Lie algebras , 2010, 1010.5896.
[7] C. Papageorgakis,et al. Nonabelian (2,0) tensor multiplets and 3-algebras , 2010, 1007.2982.
[8] Michel Goze,et al. n-Lie algebras , 2009, 0909.1419.
[9] L. Takhtajan. Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.
[10] D. Minic,et al. On the quantization of Nambu brackets , 1999, hep-th/9906248.
[11] M. Flato,et al. Deformation quantization and Nambu Mechanics , 1996, hep-th/9602016.
[12] D. Quillen,et al. Superconnections, thom classes, and equivariant differential forms , 1986 .
[13] L. Faddeev,et al. Gauge fields, introduction to quantum theory , 1980 .
[14] Y. Nambu. Generalized Hamiltonian dynamics , 1973 .
[15] Jerrold E. Marsden,et al. Generalized Hamiltonian mechanics , 1968 .