A physically based mobility model for numerical simulation of nonplanar devices

A semiempirical model for carrier mobility in silicon inversion layers is presented. The model, strongly oriented to CAD (computer-aided design) applications, is suitable for two-dimensional numerical simulations of nonplanar devices. A local mobility function, set up in terms of a simple Mattiessen's rule, provides a careful description of MOSFET operation in a wide range of normal (or gate) electric fields, channel impurity concentrations of between 5*10/sup 14/ cm/sup -3/ and 10/sup 17/ cm/sup -3/ for the acceptor density of states and 6*10/sup 14/ cm/sup -3/ and 3*10/sup 17/ cm/sup -3/ for the donor density of states; and temperatures between 200 K and 460 K. Best-fit model parameters are extracted by comparing the calculated drain conductance with a very large set of experimental data points. >

[1]  K. Yamaguchi,et al.  A mobility model for carriers in the MOS inversion layer , 1983, IEEE Transactions on Electron Devices.

[2]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[3]  E. Conwell,et al.  Electrical Properties of N -Type Germanium , 1954 .

[4]  F. Fang,et al.  Hot Electron Effects and Saturation Velocities in Silicon Inversion Layers , 1970 .

[5]  J. T. Clemens,et al.  Characterization of the electron mobility in the inverted <100> Si surface , 1979, 1979 International Electron Devices Meeting.

[6]  K. Doganis,et al.  Optimized Extraction of MOS Model Parameters , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  S. Manzini,et al.  Effect of Coulomb scattering in n‐type silicon inversion layers , 1985 .

[8]  S. Russek,et al.  Semi-empirical equations for electron velocity in silicon: Part II—MOS inversion layer , 1983, IEEE Transactions on Electron Devices.

[9]  K. K. Thornber,et al.  Relation of drift velocity to low‐field mobility and high‐field saturation velocity , 1980 .

[10]  D. Silber,et al.  Minority-carrier diffusion coefficients in highly doped silicon , 1979 .

[11]  J. Plummer,et al.  Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces , 1980 .

[12]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[13]  K. Yamaguchi Field-dependent mobility model for two-dimensional numerical analysis of MOSFET's , 1979, IEEE Transactions on Electron Devices.

[14]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[15]  S. Manzini,et al.  High-field drift velocity of electrons in silicon inversion layers , 1988 .

[16]  Y. C. Cheng,et al.  Relative importance of phonon scattering to carrier mobility in Si surface layer at room temperature , 1973 .

[17]  F. Fang,et al.  Transport Properties of Electrons in Inverted Silicon Surfaces , 1968 .

[18]  D. F. Nelson,et al.  High‐field drift velocity of electrons at the Si–SiO2 interface as determined by a time‐of‐flight technique , 1983 .

[19]  F. Stern Self-Consistent Results for n -Type Si Inversion Layers , 1972 .

[20]  T. H. Ning,et al.  Electron scattering in silicon inversion layers by oxide and surface roughness , 1976 .

[21]  T. H. Ning,et al.  The scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface , 1972 .

[22]  R. W. Coen,et al.  Velocity of surface carriers in inversion layers on silicon , 1980 .

[23]  J.A. del Alamo,et al.  Measurement of hole mobility in heavily doped n-type silicon , 1986, IEEE Electron Device Letters.

[24]  T. Nishida,et al.  A physically based mobility model for MOSFET numerical simulation , 1987, IEEE Transactions on Electron Devices.

[25]  Stephen M. Goodnick,et al.  Surface roughness induced scattering and band tailing , 1982 .

[26]  A. Neugroschel,et al.  Minority-carrier diffusion coefficients and mobilities in silicon , 1985, IEEE Electron Device Letters.

[27]  S. Odanaka,et al.  A mobility model for submicrometer MOSFET device simulations , 1987, IEEE Electron Device Letters.