Coding metasurface holography with polarization-multiplexed functionality

Multiplexing technologies can be used as a platform for low-cost, high-performance, and large-capacity holographic displays and data storage systems. In this paper, a polarization multiplexed method is proposed to realize two different information channels under orthogonally linear-polarized incidences utilizing the coding metasurface. Based on the modified weighted Gerchberg–Saxton (GSW) algorithm, a two-bit coding metasurface is designed with a set of double-layer cross-type meta-atoms to encode the holographic phase information, which can reflect two independent holographic images with respect to different incident polarization. The experimental results agree well with the numerical simulations and the theoretical predictions, which make the proposed multiplexed two-bit coding meta-hologram a great potential in numerous applications such as data storage and information processing.

[1]  Jacob Scheuer,et al.  Holography: Metasurfaces make it practical. , 2015, Nature nanotechnology.

[2]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[3]  Qian Ma,et al.  Intelligent metasurface imager and recognizer , 2019, Light: Science & Applications.

[4]  Ali Momeni,et al.  Asymmetric Spatial Power Dividers Using Phase–Amplitude Metasurfaces Driven by Huygens Principle , 2019, ACS Omega.

[5]  Xiang Wan,et al.  Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging , 2016, Scientific Reports.

[6]  Wei Xu,et al.  Multichannel direct transmissions of near-field information , 2019, Light: Science & Applications.

[7]  Xiang Wan,et al.  Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams , 2016, Advanced science.

[8]  Qun Wu,et al.  Coding Huygens' metasurface for enhanced quality holographic imaging. , 2019, Optics express.

[9]  S. Ruan,et al.  Integration of Ultrathin Metasurfaces with a Lens for Efficient Polarization Division Multiplexing , 2019, Advanced Optical Materials.

[10]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[11]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[12]  L. B. Lesem,et al.  Scientific Applications: Computer synthesis of Holograms for 3-D display , 1968, CACM.

[13]  Bai-Ou Guan,et al.  Laser-Splashed Three-Dimensional Plasmonic Nanovolcanoes for Steganography in Angular Anisotropy. , 2018, ACS nano.

[14]  Federico Capasso,et al.  Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. , 2017, Physical review letters.

[15]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[16]  Xiaoliang Ma,et al.  Multicolor 3D meta-holography by broadband plasmonic modulation , 2016, Science Advances.

[17]  Qiang Cheng,et al.  Terahertz Broadband Low‐Reflection Metasurface by Controlling Phase Distributions , 2015 .

[18]  Weiping Cai,et al.  Plasmonic holographic imaging with V-shaped nanoantenna array. , 2013, Optics express.

[19]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[20]  Xiang Wan,et al.  A broadband transformation-optics metasurface lens , 2014 .

[21]  Federico Capasso,et al.  Holographic detection of the orbital angular momentum of light with plasmonic photodiodes , 2012, Nature Communications.

[22]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[23]  Xiaodong Yang,et al.  Full-Color Plasmonic Metasurface Holograms. , 2016, ACS nano.

[24]  P. Genevet,et al.  Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces , 2020, Nature Communications.

[25]  Qun Wu,et al.  Metasurface holographic image projection based on mathematical properties of Fourier transform , 2020 .

[26]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[27]  Xuemai Gu,et al.  Huygens Metasurface Holograms with the Modulation of Focal Energy Distribution , 2018 .

[28]  Jiubin Tan,et al.  Polarization‐Engineered Noninterleaved Metasurface for Integer and Fractional Orbital Angular Momentum Multiplexing , 2020, Laser & Photonics Reviews.

[29]  Maokun Li,et al.  A programmable metasurface with dynamic polarization, scattering and focusing control , 2016, Scientific Reports.

[30]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[31]  Tie Jun Cui,et al.  Information metamaterials and metasurfaces , 2017 .

[32]  P. Genevet,et al.  Metasurface orbital angular momentum holography , 2019, Nature Communications.

[33]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[34]  Xu Han,et al.  Ultrawideband and High-Efficiency Linear Polarization Converter Based on Double V-Shaped Metasurface , 2015, IEEE Transactions on Antennas and Propagation.

[35]  Tie Jun Cui,et al.  Transmission‐Reflection‐Integrated Multifunctional Coding Metasurface for Full‐Space Controls of Electromagnetic Waves , 2018, Advanced Functional Materials.

[36]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[37]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[38]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[39]  Qun Wu,et al.  Multi-focus hologram utilizing Pancharatnam-Berry phase elements based metamirror. , 2019, Optics letters.

[40]  Tie Jun Cui,et al.  Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces. , 2017, ACS applied materials & interfaces.