Generalized and oxdinary least squakes with estimated and unequal variances

An assumption which is often violated in the application of experimental designs is equality of variances. There are several methods available for estimating the unequal variances. This paper covers incorporating different estimators of the variances with the ordinary least squares and generalized least squares. A Monte Carlo study provides more insight into the behavior of these procedures. For some small sample sizes, the incorporations with the ordinary least squares perform satisfactorily, but with the generalized least squares they do not.

[1]  Lee W. Schruben,et al.  Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments , 1978 .

[2]  Jack P. C. Kleijnen Regression Analysis for Simulation Practitioners , 1981 .

[3]  Jack P.C. Kleijnen,et al.  Small-sample behavior of weighted least squares in experimental design applications , 1981 .

[4]  T. R. Bement,et al.  Variance of Weighted Regression Estimators when Sampling Errors are Independent and Heteroscedastic , 1969 .

[5]  Parthasaradhi Mallela Necessary and Sufficient Conditions for MINQU-Estimation of Heteroskedastic Variances in Linear Models , 1972 .

[6]  G. S. Fishman Principles of Discrete Event Simulation , 1978 .

[7]  Roger A. Horn,et al.  Comparison of Estimators of Heteroscedastic Variances in Linear Models , 1975 .

[8]  A. Narayanan Probability and statistics in engineering and management science , 1972 .

[9]  C. R. Henderson ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS , 1953 .

[10]  C. Radhakrishna Rao,et al.  Minimum variance quadratic unbiased estimation of variance components , 1971 .

[11]  J. N. K. Rao,et al.  On the Estimation of Heteroscedastic Variances , 1973 .

[12]  J. S. Williams The Variance of Weighted Regression Estimators , 1967 .

[13]  S. R. Searle,et al.  The theory of linear models and multivariate analysis , 1981 .

[14]  C. R. Rao,et al.  Estimation of variance and covariance components--MINQUE theory , 1971 .

[15]  J. Rao,et al.  Combining Independent Estimators and Estimation in Linear Regression with Unequal Variances , 1971 .

[16]  H. Scheffé The Analysis of Variance , 1960 .

[17]  C. R. Rao,et al.  Estimation of Variance and Covariance Components in Linear Models , 1972 .

[18]  Calyampudi R. Rao Estimation of Heteroscedastic Variances in Linear Models , 1970 .

[19]  D. B. Duncan,et al.  Estimating Heteroscedastic Variances in Linear Models , 1975 .