Compressed Sensing: “When Sparsity Meets Sampling”

Keywords: LTS2 ; lts2 Reference EPFL-CHAPTER-144021 Record created on 2010-01-30, modified on 2017-05-10

[1]  Antonin Descampe,et al.  How does digital cinema compress images , 2009 .

[2]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[3]  J. Romberg Sensing by Random Convolution , 2007, 2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.

[4]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[5]  E.J. Candes Compressive Sampling , 2022 .

[6]  Richard G. Baraniuk,et al.  Theory and Implementation of an Analog-to-Information Converter using Random Demodulation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[7]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[8]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[9]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[10]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[11]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[12]  Martin Vetterli,et al.  Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.

[13]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[14]  S. Kirolos,et al.  Random Sampling for Analog-to-Information Conversion of Wideband Signals , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[15]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[16]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[17]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[18]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[19]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[20]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[21]  Lu Gan Block Compressed Sensing of Natural Images , 2007, 2007 15th International Conference on Digital Signal Processing.

[22]  Alexandros G. Dimakis,et al.  Sparse Recovery of Positive Signals with Minimal Expansion , 2009, ArXiv.

[23]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[24]  Richard G. Baraniuk,et al.  Democracy in Action: Quantization, Saturation, and Compressive Sensing , 2011 .

[25]  Richard G. Baraniuk,et al.  Finite Range Scalar Quantization for Compressive Sensing , 2009 .

[26]  Stephen J. Wright,et al.  Toeplitz-Structured Compressed Sensing Matrices , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[27]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[30]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[31]  Laurent Jacques,et al.  CMOS compressed imaging by Random Convolution , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[33]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[34]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[35]  Yin Zhang On Theory of Compressive Sensing via L_1-Minimization: Simple Derivations and Extensions , 2008 .

[36]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[37]  Ondřej Klobušník,et al.  ArXiv.org e-print archive , 2004 .

[38]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[39]  Olgica Milenkovic,et al.  Distortion-rate functions for quantized compressive sensing , 2009, 2009 IEEE Information Theory Workshop on Networking and Information Theory.

[40]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[41]  Laurent Jacques,et al.  Dequantizing Compressed Sensing: When Oversampling and Non-Gaussian Constraints Combine , 2009, IEEE Transactions on Information Theory.

[42]  Marc-André Gray Nuit Blanche , 2010, SIGGRAPH '10.

[43]  S. Mallat A wavelet tour of signal processing , 1998 .

[44]  Laurent Jacques,et al.  DeQuantizing Compressed Sensing with non-Gaussian constraints , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[45]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[46]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[47]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[49]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[50]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[51]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[52]  M. Ledoux The concentration of measure phenomenon , 2001 .

[53]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[54]  Alexandros G. Dimakis,et al.  Sparse Recovery of Nonnegative Signals With Minimal Expansion , 2011, IEEE Transactions on Signal Processing.

[55]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[56]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[57]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[58]  Laurent Jacques,et al.  Compressive sampling of pulse trains: Spread the spectrum! , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[59]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[60]  Yannick Boursier,et al.  Spread spectrum for imaging techniques in radio interferometry , 2009, ArXiv.

[61]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[62]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[63]  Trac D. Tran,et al.  Fast compressive imaging using scrambled block Hadamard ensemble , 2008, 2008 16th European Signal Processing Conference.

[64]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[65]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[66]  David V. Anderson,et al.  Compressive Sensing on a CMOS Separable-Transform Image Sensor , 2010, Proceedings of the IEEE.

[67]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[68]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[69]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.