The complexity of the matrix eigenproblem

The eigenproblem for an n-by-n matrix A is the problem of the approximation (within a relative error bound 2-‘) of all the eigenvalues of the matrix A and computing the associated eigenspaces of all these eigenvalues. We show that the arithmetic complexity of this problem is bounded by O(n3 + (nlog’n)log b). If the characteristic and minimum polynomials of the matrix A coincide with each other (which is the ca8e for generic matrices of all classes of general and special matrices that we consider), then the latter deterministic cost bound can be replaced by the randomized bound O(K.a(2n) + n* + (n log’n) log b) where Ka(2n) denotes the cost of the computation of the 2n 1 vectors A’v, i = 1,. ,2n 1, maximized over all n-dimensional vectors v; Ka(2n) = O(M(n)logn), for M(n) = o(n2.3’6) denoting the arithmetic complexity of n x n matrix multiplication. This bound on the complexity of the eigenproblem is optimal up to a logarithmic factor and implies much faster solution of the eigenprohlem for the important special classes of matrices. In particular, we prove the bound O(n’ log n + (n log’ n) log b) on the randomized arithmetic complexity of the eigenproblem for generic matrices of the classes of n x n Toeplitz, Hank& Toeplitzlike, Hank&like and Toeplits-likeplus-Hank&like matrices. Then again, this bound is optimal (up to a logarithmic factor) for each of the latter classes of input matrices. We also prove similar nearly optimal upper bounds for the generic Caucby-like, Vandermonde-like and sparse matrices. All our complexity estimates for the eigenproblem improve the known ones by order of magnitude.

[1]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[2]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[3]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[4]  David Y. Y. Yun,et al.  On square-free decomposition algorithms , 1976, SYMSAC '76.

[5]  Stefan Goedecker,et al.  Remark on Algorithms to Find Roots of Polynomials , 1994, SIAM J. Sci. Comput..

[6]  Victor Y. Pan,et al.  Computing Matrix Eigenvalues and Polynomial Zeros Where the Output is Real , 1998, SIAM J. Comput..

[7]  Victor Y. Pan,et al.  Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros , 1995, STOC '95.

[8]  Hans J. Stetter,et al.  Matrix eigenproblems are at the heart of polynomial system solving , 1996, SIGS.

[9]  E. Kaltofen Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems , 1995 .

[10]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[11]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[12]  Victor Y. Pan,et al.  Fast and Efficient Parallel Solution of Sparse Linear Systems , 1993, SIAM J. Comput..

[13]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[14]  Peter Kirrinnis,et al.  Partial Fraction Decomposition in (z) and Simultaneous Newton Iteration for Factorization in C[z] , 1998, J. Complex..

[15]  Victor Y. Pan,et al.  Controlled iterative methods for solving polynomial systems , 1998, ISSAC '98.

[16]  Henryk Wozniakowski,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..

[17]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[18]  V. Pan PARAMETRIZATION OF NEWTON'S ITERATION FOR COMPUTATIONS WITH STRUCTURED MATRICES AND APPLICATIONS , 1992 .

[19]  D. Faddeev,et al.  Computational Methods of Linear Algebra , 1959 .

[20]  M. E. R. “If” , 1921, Definitions.

[21]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[22]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[23]  Victor Y. Pan,et al.  Parallel complexity of tridiagonal symmetric Eigenvalue problem , 1991, SODA '91.

[24]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[25]  J. Kuczy,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .

[26]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[27]  John H. Reif,et al.  Efficient parallel solution of sparse eigenvalue and eigenvector problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[28]  Victor Y. Pan,et al.  Processor efficient parallel solution of linear systems over an abstract field , 1991, SPAA '91.

[29]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[32]  Victor Y. Pan,et al.  Asymptotic acceleration of solving multivariate polynomial systems of equations , 1998, STOC '98.

[33]  J. M Varah,et al.  Computational methods in linear algebra , 1984 .

[34]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[35]  Walter Keller-Gehrig,et al.  Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..

[36]  I. Gohberg,et al.  Complexity of multiplication with vectors for structured matrices , 1994 .