Generating nonsymbolic number stimuli

Studies investigating nonsymbolic numbers (e.g., dot arrays) are confronted with the problem that changes in numerosity are always accompanied by changes in the visual properties of the stimulus. It is therefore debated whether the visual properties of the stimulus rather than number can explain the results obtained in studies investigating nonsymbolic number processing. In this report, we present a program (available at http://titiagebuis.eu/Materials.html; note that the program is designed to work with the Psychophysics Toolbox in MATLAB) that exports information about the visual properties of stimuli that co-vary with number (area extended, item size, total surface, density, and circumference). Consequently, insight into the relation between the visual properties of the stimulus and numerical distance can be achieved, and post hoc analyses can be conducted to directly reveal whether numerical distance or (some combinations of) the visual properties of a stimulus could be the most likely candidate underlying the results. Here, we report data that demonstrate the program’s usefulness for research on nonsymbolic number stimuli.

[1]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[2]  Roi Cohen Kadosh,et al.  Numerical representation: Abstract or nonabstract? , 2008 .

[3]  S. Dehaene,et al.  A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex , 2007, Neuron.

[4]  Justin Halberda,et al.  Developmental change in the acuity of the "Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. , 2008, Developmental psychology.

[5]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[6]  Andrea Facoetti,et al.  Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia , 2010, Cognition.

[7]  E. Miller,et al.  Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex , 2003, Neuron.

[8]  Avishai Henik,et al.  Mental representation: What can pitch tell us about the distance effect? , 2008, Cortex.

[9]  Elizabeth M. Brannon,et al.  Induced Alpha-band Oscillations Reflect Ratio-dependent Number Discrimination in the Infant Brain , 2009, Journal of Cognitive Neuroscience.

[10]  T. Verguts,et al.  Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders , 2008, Psychonomic bulletin & review.

[11]  Elizabeth S Spelke,et al.  Origins of Number Sense , 2003, Psychological science.

[12]  Wim Fias,et al.  Number Processing Pathways in Human Parietal Cortex , 2009, Cerebral cortex.

[13]  Fei Xu,et al.  Number sense in human infants. , 2005, Developmental science.

[14]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[15]  Melissa E. Libertus,et al.  Electrophysiological evidence for notation independence in numerical processing , 2007, Behavioral and Brain Functions.

[16]  D. LeBihan,et al.  Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task , 2001, NeuroImage.

[17]  S. Dehaene,et al.  Exact and Approximate Arithmetic in an Amazonian Indigene Group , 2004, Science.

[18]  Daniel Ansari,et al.  Neural correlates of symbolic number processing in children and adults , 2005, Neuroreport.

[19]  E. Spelke,et al.  Large number discrimination in 6-month-old infants , 2000, Cognition.

[20]  Wim Fias,et al.  Priming reveals differential coding of symbolic and non-symbolic quantities , 2007, Cognition.

[21]  Koleen McCrink,et al.  Ratio Abstraction by 6-Month-Old Infants , 2007, Psychological science.

[22]  Catherine Sophian,et al.  How do people apprehend large numerosities? , 2008, Cognition.

[23]  P. G. Vos,et al.  A probabilistic model for the discrimination of visual number , 1982, Perception & psychophysics.

[24]  Daniel Ansari,et al.  Age-related Changes in the Activation of the Intraparietal Sulcus during Nonsymbolic Magnitude Processing: An Event-related Functional Magnetic Resonance Imaging Study , 2006, Journal of Cognitive Neuroscience.

[25]  Kelly S. Mix,et al.  Multiple cues for quantification in infancy: is number one of them? , 2002, Psychological bulletin.

[26]  E. Spelke,et al.  Infants' Discrimination of Number vs. Continuous Extent , 2002, Cognitive Psychology.

[27]  Titia Gebuis,et al.  Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009) , 2011, Cognition.

[28]  Bert Reynvoet,et al.  Children's representation of symbolic magnitude: the development of the priming distance effect. , 2009, Journal of experimental child psychology.

[29]  E. Spelke,et al.  Newborn infants perceive abstract numbers , 2009, Proceedings of the National Academy of Sciences.