Efficient and Tight Upper Bounds for Haplotype Inference by Pure Parsimony Using Delayed Haplotype Selection
暂无分享,去创建一个
Inês Lynce | Joao Marques-Silva | Arlindo L. Oliveira | Ana Graça | Joao Marques-Silva | I. Lynce | Ana Graça
[1] Daniel G. Brown,et al. A New Integer Programming Formulation for the Pure Parsimony Problem in Haplotype Analysis , 2004, WABI.
[2] R S Judson,et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[3] Conrad C. Huang,et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. , 2003, Pharmacogenetics.
[4] L. Tsui,et al. Identification of the cystic fibrosis gene: genetic analysis. , 1989, Science.
[5] M. Olivier. A haplotype map of the human genome , 2003, Nature.
[6] Dan Gusfield,et al. Haplotype Inference by Pure Parsimony , 2003, CPM.
[7] Armin Biere,et al. Theory and Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings , 2006, SAT.
[8] Inês Lynce,et al. Efficient Haplotype Inference with Boolean Satisfiability , 2006, AAAI.
[9] R. Adkins,et al. Comparison of the accuracy of methods of computational haplotype inference using a large empirical dataset , 2004, BMC Genetics.
[10] L. Tsui,et al. Erratum: Identification of the Cystic Fibrosis Gene: Genetic Analysis , 1989, Science.
[11] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[12] Zhaohui S. Qin,et al. Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. , 2002, American journal of human genetics.
[13] Inês Lynce,et al. SAT in Bioinformatics: Making the Case with Haplotype Inference , 2006, SAT.
[14] Dan Geiger,et al. High density linkage disequilibrium mapping using models of haplotype block variation , 2004, ISMB/ECCB.
[15] M. Daly,et al. High-resolution haplotype structure in the human genome , 2001, Nature Genetics.
[16] D. Gusfield,et al. Analysis and exploration of the use of rule-based algorithms and consensus methods for the inferral of haplotypes. , 2003, Genetics.
[17] J. Crow,et al. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. , 1964, Genetics.
[18] Daniel G. Brown,et al. Integer programming approaches to haplotype inference by pure parsimony , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[19] Dan Gusfield,et al. Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algorithms , 2001, J. Comput. Biol..
[20] Giuseppe Lancia,et al. Haplotyping Populations by Pure Parsimony: Complexity of Exact and Approximation Algorithms , 2004, INFORMS J. Comput..
[21] A. Clark,et al. Inference of haplotypes from PCR-amplified samples of diploid populations. , 1990, Molecular biology and evolution.
[22] P. Donnelly,et al. A new statistical method for haplotype reconstruction from population data. , 2001, American journal of human genetics.
[23] M. Rieder,et al. Sequence variation in the human angiotensin converting enzyme , 1999, Nature Genetics.
[24] Inês Lynce,et al. Efficient Haplotype Inference with Pseudo-boolean Optimization , 2007, AB.
[25] M. Olivier. A haplotype map of the human genome. , 2003, Nature.
[26] M. Hodson,et al. Identification of the cystic fibrosis gene. , 1990, BMJ.
[27] Ting Chen,et al. An approximation algorithm for haplotype inference by maximum parsimony. , 2005 .
[28] Lusheng Wang,et al. Haplotype inference by maximum parsimony , 2003, Bioinform..