Numerical Simulation of Third-Generation HgCdTe Detector Pixel Arrays

In this paper, we present a physics-based full 3-D numerical simulation model of third-generation infrared (IR) detector pixel arrays. The approach avoids geometrical simplifications typical of 1-D and 2-D models that can introduce errors which are difficult to quantify. We have used a finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite-element method to solve the drift-diffusion equations on a mixed-element grid to compute the electrical characteristics including the I(V) characteristics and quantum efficiency. Furthermore, we have used this model to study HgCdTe two-color detectors that operate in the medium-wave to long-wave IR and photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars that operate in the medium-wave IR.

[1]  Marion B. Reine,et al.  HgCdTe photodiodes for IR detection: a review , 2001, SPIE OPTO.

[2]  Jeremiah R. Lowney,et al.  Temperature and composition dependence of the energy gap of Hg1−xCdxTe by two‐photon magnetoabsorption techniques , 1990 .

[3]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[4]  A. Rogalski Infrared Detectors, Second Edition , 2010 .

[5]  G. M. Venzor,et al.  Spectral crosstalk by radiative recombination in sequential-mode, dual mid-wavelength infrared band HgCdTe detectors , 2004 .

[6]  P. Perfetti,et al.  The problem of heterojunction band discontinuities , 1987 .

[7]  Yael Nemirovsky,et al.  Infrared optical absorption of Hg1−xCdxTe , 1979 .

[8]  J. Schmit,et al.  Calculation of intrinsic carrier concentration in Hg1−xCdxTe , 1983 .

[9]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[10]  Douglas S. Hobbs,et al.  Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials , 2005, SPIE Defense + Commercial Sensing.

[11]  A. Rogalski Infrared detectors: an overview , 2002 .

[12]  Full band structure calculation of minority carrier lifetimes in HgCdTe and thallium-based alloys , 1998 .

[13]  C. L. Jones,et al.  Minority carrier lifetime in n‐type Bridgman grown Hg1−xCdxTe , 1983 .

[14]  Enrico Bellotti,et al.  Empirical Pseudopotential and Full-Brillouin-Zone k · p Electronic Structure of CdTe, HgTe, and Hg1−xCdxTe , 2009 .

[15]  Enrico Bellotti,et al.  Full-Band Monte Carlo Simulation of HgCdTe APDs , 2010 .

[16]  W. A. Radford,et al.  Third generation FPA development status at Raytheon Vision Systems (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[17]  T. J. De Lyon,et al.  Status of two-color and large format HgCdTe FPA technology at Raytheon Vision Systems , 2006, SPIE OPTO.

[18]  M. Muller,et al.  How dislocations affect transport , 1995 .

[19]  M. Schilfgaarde,et al.  Defect modeling studies in HgCdTe and CdTe , 1995 .

[20]  Enrico Bellotti,et al.  Numerical Analysis of a Very Long-Wavelength HgCdTe Pixel Array for Infrared Detection , 2008 .

[21]  B. Orsal,et al.  Impact ionization resonance and auger recombination in Hg 1 - x Cd x Te ( 0.6 ≤ x ≤ 0.7 ) , 1987 .

[22]  Enrico Bellotti,et al.  Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays , 2012 .

[23]  J. Faurie,et al.  Minority‐carrier lifetime in p‐type (111)B HgCdTe grown by molecular‐beam epitaxy , 1990 .

[24]  P. Norton HgCdTe Infrared Detectors , 2002 .

[25]  M. Kruer,et al.  Auger‐limited carrier lifetimes in HgCdTe at high excess carrier concentrations , 1974 .

[26]  E. Bellotti,et al.  Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors , 2006, IEEE Journal of Quantum Electronics.

[27]  Luigi Colombo,et al.  Minority‐carrier lifetime in indium‐doped n‐type Hg0.78Cd0.22Te liquid‐phase‐epitaxial films , 1992 .

[28]  Jeremiah R. Lowney,et al.  Intrinsic carrier concentration of narrow‐gap mercury cadmium telluride based on the nonlinear temperature dependence of the band gap , 1992 .

[29]  William A. Radford,et al.  Crosstalk Modeling of Small-Pitch Two-Color HgCdTe Photodetectors , 2012, Journal of Electronic Materials.

[30]  E. Finkman,et al.  Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects , 1985 .

[31]  S. Sivananthan,et al.  Carrier recombination in indium‐doped HgCdTe(211)B epitaxial layers grown by molecular beam epitaxy , 1994 .

[32]  D. F. Weirauch,et al.  Temperature, thickness, and interfacial composition effects on the absorption properties of (Hg,Cd)Te epilayers grown by liquid-phase epitaxy on CdZnTe , 2005 .

[33]  Arden Sher,et al.  Accurate calculation of Auger rates in infrared materials , 1997 .

[34]  R. Pratt,et al.  Minority‐carrier lifetime in doped and undoped n‐type CdxHg1−xTe , 1986 .

[35]  C. A. Hougen,et al.  Model for infrared absorption and transmission of liquid‐phase epitaxy HgCdTe , 1989 .

[36]  M. A. Kinch,et al.  Recombination mechanisms in 8–14‐μ HgCdTe , 1973 .

[37]  Enrico Bellotti,et al.  Calculation of Auger Lifetimes in HgCdTe , 2011 .

[38]  Antoni Rogalski,et al.  Effect of dislocations on performance of LWIR HgCdTe photodiodes , 2000 .

[39]  S. Krishnamurthy,et al.  A detailed calculation of the auger lifetime in p-type HgCdTe , 2000 .

[40]  Enrico Bellotti,et al.  A numerical study of broadband absorbers for visible to infrared detectors , 2011 .

[41]  E. Finkman,et al.  The exponential optical absorption band tail of Hg1−xCdxTe , 1984 .

[42]  Enrico Bellotti,et al.  3D electromagnetic and electrical simulation of HgCdTe pixel arrays , 2011, 2011 Numerical Simulation of Optoelectronic Devices.

[43]  A. Syllaios,et al.  Minority carrier lifetime in mercury cadmium telluride , 1993 .

[44]  Enrico Bellotti,et al.  A 2D Full-Band Monte Carlo Study of HgCdTe-Based Avalanche Photodiodes , 2011 .

[45]  J. G. Pasko,et al.  Measurement of minority carrier lifetime in n-type MBE HgCdTe and its dependence on annealing , 1998 .

[46]  Jamie D. Phillips,et al.  Detailed study of above bandgap optical absorption in HgCdTe , 2005 .

[47]  Pradip Mitra,et al.  Progress in MOVPE of HgCdTe for advanced infrared detectors , 1998 .

[48]  Enrico Bellotti,et al.  Three-Dimensional Electromagnetic and Electrical Simulation of HgCdTe Pixel Arrays , 2011 .

[49]  T. N. Casselman,et al.  Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .

[50]  Valerie Randall,et al.  HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection , 2004 .