Fe3O4/Au/Fe3O4 nanoflowers exhibiting tunable saturation magnetization and enhanced bioconjugation.

Composite nanoparticles have proved to be promising in a wide range of biotechnological applications. In this paper, we report on a facile method to synthesize novel Fe(3)O(4)/Au/Fe(3)O(4) nanoparticles (nanoflowers) that integrate hybrid components and surface types. We demonstrate that relative to conventional nanoparticles with core/shell configuration, such nanoflowers not only retain their surface plasmon property but also allow for 170% increase in the saturation magnetization and 23% increase in the conjugation efficiency due to the synergistic co-operation between the hierarchical structures. Moreover, we demonstrate that the magnetic properties of such composite nanoparticles can be tuned by controlling the size of additional petals (Fe(3)O(4) phase). These novel building blocks could open up novel and exciting vistas in nanomedicine for broad applications such as biosensing, cancer diagnostics and therapeutics, targeted delivery, and imaging.

[1]  Jinwoo Cheon,et al.  Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging , 2007, Nature Medicine.

[2]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[3]  F. Lanni,et al.  Synthesis and Single‐Particle Optical Detection of Low‐Polydispersity Plasmonic‐Superparamagnetic Nanoparticles , 2008 .

[4]  Yali Cui,et al.  A novel approach for transferring oleic acid capped iron oxide nanoparticles to water phase. , 2011, Journal of nanoscience and nanotechnology.

[5]  Yadong Li,et al.  Bifunctional Au-Fe3O4 nanoparticles for protein separation. , 2007, ACS nano.

[6]  Shouheng Sun,et al.  Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. , 2005, Nano letters.

[7]  Dingsheng Wang,et al.  Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals , 2006 .

[8]  Xiaoyuan Chen,et al.  Nanoparticles for cell labeling. , 2011, Nanoscale.

[9]  Pablo Del Pino,et al.  Taking advantage of unspecific interactions to produce highly active magnetic nanoparticle-antibody conjugates. , 2011, ACS nano.

[10]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[11]  R. Sperling,et al.  Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  R. John,et al.  In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes , 2010, Proceedings of the National Academy of Sciences.

[13]  Seung Jae Oh,et al.  Multifunctional Magnetic Gold Nanocomposites: Human Epithelial Cancer Detection via Magnetic Resonance Imaging and Localized Synchronous Therapy , 2008 .

[14]  Samuel K Sia,et al.  An integrated approach to a portable and low-cost immunoassay for resource-poor settings. , 2004, Angewandte Chemie.

[15]  Zhichuan J. Xu,et al.  Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. , 2007, Journal of the American Chemical Society.

[16]  M. Sastry,et al.  Use of aqueous foams for the synthesis of gold nanoparticles of variable morphology , 2004 .

[17]  Bertrand Lavédrine,et al.  Cover Picture: The Nature of the Extraordinary Finish of Stradivari’s Instruments (Angew. Chem. Int. Ed. 1/2010) , 2010 .

[18]  M. W. Lee,et al.  Influence of impregnation of chitosan beads with cetyl trimethyl ammonium bromide on their structure and adsorption of congo red from aqueous solutions , 2009 .

[19]  Nianqiang Wu,et al.  Interaction of Fatty Acid Monolayers with Cobalt Nanoparticles , 2004 .

[20]  Jacek K. Stolarczyk,et al.  Hierarchical gold-decorated magnetic nanoparticle clusters with controlled size. , 2011, ACS nano.

[21]  Yu Fang,et al.  Preparation and mechanism of Fe 3 O 4 /Au core/shell super-paramagnetic microspheres , 2001 .

[22]  B. Grzybowski,et al.  Synthesis, shape control, and optical properties of hybrid Au/Fe3O(4) "nanoflowers". , 2008, Small.

[23]  P. Nordlander,et al.  Magnetic-plasmonic core-shell nanoparticles. , 2009, ACS nano.

[24]  B. Simard,et al.  Laser-assisted synthesis of superparamagnetic Fe@Au core-shell nanoparticles. , 2006, The journal of physical chemistry. B.

[25]  Richard Leapman,et al.  Flower-like Au-Fe3O4 optical nanosensor for imaging protease expressions in vivo , 2011, 2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA).

[26]  Neelam Kumarswami,et al.  Bioconjugation and characterisation of gold colloid-labelled proteins. , 2010, Journal of immunological methods.

[27]  Yu Huang,et al.  Multifunctional nanoparticles displaying magnetization and near-IR absorption. , 2008, Angewandte Chemie.

[28]  Jin Luo,et al.  Monodispersed core-shell Fe3O4@Au nanoparticles. , 2005, The journal of physical chemistry. B.

[29]  Yang Ren,et al.  Plasmonic/magnetic bifunctional nanoparticles. , 2011, Angewandte Chemie.

[30]  Chenjie Xu,et al.  Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. , 2008, Angewandte Chemie.

[31]  Yongan Yang,et al.  On doping CdS/ZnS core/shell nanocrystals with Mn. , 2008, Journal of the American Chemical Society.

[32]  Raoul Kopelman,et al.  Targeted gold nanoparticles enable molecular CT imaging of cancer. , 2008, Nano letters.

[33]  Sau Yin Chin,et al.  Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection. , 2010, Analytical chemistry.

[34]  I-Chen Chiang,et al.  Synthesis of Monodisperse FeAu Nanoparticles with Tunable Magnetic and Optical Properties , 2007 .

[35]  Fang Bao,et al.  Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[36]  V. Pierre,et al.  Fe3O4@organic@Au: core-shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents. , 2011, Chemical communications.

[37]  Hongyuan Chen,et al.  Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. , 2008, Langmuir.

[38]  X. Zhang,et al.  Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core−Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins , 2010 .

[39]  M. O’Donnell,et al.  Multifunctional nanoparticles as coupled contrast agents. , 2010, Nature communications.

[40]  Zhichuan J. Xu,et al.  Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles , 2010, Advanced materials.

[41]  M. Correa‐Duarte,et al.  Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications , 2007 .