Regularization by projection: Approximation theoretic aspects and distance functions

Abstract The authors study regularization of non-linear inverse problems by projection methods. Non-linearity is controlled by some range invariance assumption. Emphasis is on approximation theoretic properties of the discretization which determine the convergence rates. Instead of using source conditions for the true solution to represent the error, the authors show how distance functions with respect to some benchmark smoothness are able to replace this. Some examples indicate how the results can be applied.

[1]  J. Baumeister Stable solution of inverse problems , 1987 .

[2]  Barbara Kaltenbacher,et al.  Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems , 2000 .

[3]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[4]  Otmar Scherzer,et al.  A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions , 1998 .

[5]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[6]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[7]  Bernd Hofmann,et al.  Convergence rates for Tikhonov regularization from different kinds of smoothness conditions , 2006 .

[8]  B. Hofmann,et al.  Range Inclusions and Approximate Source Conditions with General Benchmark Functions , 2007 .

[9]  H. Engl,et al.  Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems , 1993 .

[10]  S. George Newton–Tikhonov regularization of ill-posed Hammerstein operator equation , 2006 .

[11]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[12]  P. Mathé,et al.  Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803 , 2003 .

[13]  A. Bakushinsky,et al.  Iterative Methods for Approximate Solution of Inverse Problems , 2005 .

[14]  Karl Kunisch,et al.  On Weakly Nonlinear Inverse Problems , 1996, SIAM J. Appl. Math..

[15]  Barbara Kaltenbacher,et al.  Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions , 2006 .

[16]  Otmar Scherzer,et al.  Factors influencing the ill-posedness of nonlinear problems , 1994 .

[17]  Bernd Hofmann,et al.  Convergence rates for Tikhonov regularization based on range inclusions , 2005 .

[18]  Heinz W. Engl,et al.  Regularization Methods for Nonlinear Ill-Posed Problems with Applications to Phase Reconstruction , 1997 .

[19]  P. Mathé The Lepskii principle revisited , 2006 .

[20]  J. Dieudonné,et al.  Éléments d'analyse , 1972 .

[22]  Bernd Hofmann,et al.  Analysis of Profile Functions for General Linear Regularization Methods , 2007, SIAM J. Numer. Anal..

[23]  S. George,et al.  Newton–Lavrentiev regularization of ill-posed Hammerstein type operator equation , 2006 .

[24]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[25]  A. Goldenshluger,et al.  Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations , 2000 .

[26]  Alexander V. Avdeev,et al.  Inverse Problems of Mathematical Physics , 2003 .

[27]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[28]  P. Mathé,et al.  Discretization strategy for linear ill-posed problems in variable Hilbert scales , 2003 .

[29]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[30]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .