Parking Space Recognition Method Based on Parking Space Feature Construction in the Scene of Autonomous Valet Parking

At present, the realization of autonomous valet parking (AVP) technology does not achieve information interaction between the parking spaces and vehicles, and accurate parking spaces information perception cannot be obtained when the accuracy of the search is not precise. In addition, when using the camera vision to identify the parking spaces, traditional parking space features such as parking lines and parking angles recognition are susceptible to light and environment. Especially when the vehicle nearby partially occupies the parking space to be parked, it is not easy to determine whether it is a valid empty parking space. This paper proposes a parking space recognition method based on parking space features in the scene of AVP. By constructing the multi-dimensional features containing the parking space information, the cameras are used to extract features’ contour, locate features’ position and recognize features. In this paper, a new similarity calculation formula is proposed to recognize the stained features through template matching algorithm. According to the relative position relationship between the feature and parking space, the identification of effective empty parking spaces and their boundaries is realized. The experimental results show that compared with the recognition of traditional parking lines and parking angles, this method can identify effective empty parking spaces even when the light conditions are complex and the parking spaces are partially occupied by adjacent vehicles, which simplifies the recognition algorithm and improves the reliability of the parking spaces identification.