Terahertz Superconducting Hot Electron Bolometer Heterodyne Receivers

We highlight the progress on NbN hot electron bolometer (HEB) mixers achieved through fruitful collaboration between SRON Netherlands Institute for Space Research and Delft University of Technology, the Netherlands. This includes the best receiver noise temperatures of 700 K at 1.63 THz using a twin-slot antenna mixer and 1050 K at 2.84 THz using a spiral antenna coupled HEB mixer. The mixers are based on thin NbN films on Si and fabricated with a new contact-process and-structure. By reducing their areas HEB mixers have shown an LO power requirement as low as 30 nW. Those small HEB mixers have demonstrated equivalent sensitivity as those with large areas provided the direct detection effect due to broadband radiation is removed. To manifest that a HEB based heterodyne receiver can in practice be used at arbitrary frequencies above 2 THz, we demonstrate a 2.8 THz receiver using a THz quantum cascade laser (QCL) as local oscillator.

[1]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[2]  T. M. Klapwijk,et al.  Hotspot mixing: A framework for heterodyne mixing in superconducting hot-electron bolometers , 1999 .

[3]  T. Klapwijk,et al.  IF impedance and mixer gain of NbN hot electron bolometers , 2007 .

[4]  Rigorous Analysis of a Superconducting Hot-Electron Bolometer Mixer: Theory and Comparison with Experiment , 1996 .

[5]  Andrea Neto,et al.  Coplanar-waveguide-based terahertz hot-electron-bolometer mixers mproved embedding circuit description , 2002 .

[6]  T. M. Klapwijk,et al.  Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz , 2004 .

[7]  T. Klapwijk,et al.  Direct comparison of the sensitivity of a spiral and a twin-slot antenna coupled HEB mixer at 1 6 THz , 2006 .

[8]  David A. Ritchie,et al.  2.8 THz heterodyne receiver based on a surface plasmon quantum cascade laser and a hot electron bolometer mixer , 2006 .

[9]  T. Klapwijk,et al.  Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers , 2006 .

[10]  Boris S. Karasik,et al.  Noise temperature limit of a superconducting hot‐electron bolometer mixer , 1996 .

[11]  Qing Hu,et al.  Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions , 2006 .

[12]  Teun M. Klapwijk,et al.  Improved superconducting hot-electron bolometer devices for the THz range , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[14]  Andrey M. Baryshev,et al.  Direct detection effect in small volume hot electron bolometer mixers , 2005 .

[15]  R. Schieder,et al.  Stability of heterodyne terahertz receivers , 2006 .

[16]  R. Barends,et al.  Resistivity of Ultrathin Superconducting NbN Films for Bolometer Mixers , 2007, IEEE Transactions on Applied Superconductivity.

[17]  Mark R. Swain,et al.  Forecast for HEAT on Dome A, Antarctica: the High Elevation Antarctic Terahertz Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  Todd R. Hunter,et al.  Ground-based terahertz CO spectroscopy towards Orion , 2001 .

[19]  T. M. Klapwijk,et al.  Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer , 2006 .

[20]  T. Graauw,et al.  Terahertz Technology for ESPRIT - A Far-Infrared Space Interferometer , 2005 .

[21]  J. E. Mooij,et al.  Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors , 1979 .

[22]  M. Hajenius,et al.  NbN hot electron bolometer mixers: sensitivity, LO power, direct detection and stability , 2005, IEEE Transactions on Applied Superconductivity.

[23]  B. Voronov,et al.  Reduced noise in NbN hot-electron bolometer mixers by annealing , 2006, Superconductor Science and Technology.

[24]  A. Kerr Suggestions for revised definitions of noise quantities, including quantum effects , 1999 .

[25]  I. Mehdi,et al.  A 1.7-1.9 THz local oscillator source , 2004, IEEE Microwave and Wireless Components Letters.

[26]  W. F. M. Ganzevles,et al.  Direct response of twin-slot antenna-coupled hot-electron bolometer mixers designed for 2.5 THz radiation detection , 2000 .

[27]  Pourya Khosropanah,et al.  Terahertz superconducting hot-electron bolometer mixers , 2002 .

[28]  R. Barends,et al.  Current-induced vortex unbinding in bolometer mixers , 2005 .

[29]  Teun M. Klapwijk,et al.  Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers , 2004, SPIE Astronomical Telescopes + Instrumentation.

[30]  Gregory N. Goltsman,et al.  Design and performance of the lattice-cooled hot-electron terahertz mixer , 2000 .

[31]  Teun M. Klapwijk,et al.  Development of THz Nb diffusion-cooled hot electron bolometer mixers , 2003, SPIE Astronomical Telescopes + Instrumentation.

[32]  Erik L. Kollberg,et al.  Conversion gain and fluctuation noise of phonon-cooled hot-electron bolometers in hot-spot regime , 2000 .