Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers

Stokes and anti-Stokes Raman scattering are performed on atomic layers of hexagonal molybdenum ditelluride (MoTe2), a prototypical transition metal dichalcogenide (TMDC) semiconductor. The data reveal all six types of zone center optical phonons, along with their corresponding Davydov splittings, which have been challenging to see in other TMDCs. We discover that the anti-Stokes Raman intensity of the low energy layer-breathing mode becomes more intense than the Stokes peak under certain experimental conditions, and find the effect to be tunable by excitation frequency and number of atomic layers. These observations are interpreted as a result of resonance effects arising from the C excitons in the vicinity of the Brillouin zone center in the photon-electron-phonon interaction process.

[1]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[2]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[3]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[4]  R. B. Murray,et al.  The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials , 1972 .

[5]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[6]  Ashish Arora,et al.  Indirect-to-direct band gap crossover in few-layer MoTe₂. , 2015, Nano letters.

[7]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[8]  G. Wilkinson Light Scattering in Solids III , 1982 .

[9]  E. Giannini,et al.  Chloride-Driven Chemical Vapor Transport Method for Crystal Growth of Transition Metal Dichalcogenides , 2013 .

[10]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[11]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[12]  Jaesung Park,et al.  Anomalous excitonic resonance Raman effects in few-layered MoS2. , 2015, Nanoscale.

[13]  J. Maultzsch,et al.  Interlayer resonant Raman modes in few-layer MoS 2 , 2015 .

[14]  Lifa Zhang,et al.  Chiral phonons at high-symmetry points in monolayer hexagonal lattices. , 2015, Physical review letters.

[15]  Jun Yan,et al.  Inversion-symmetry-breaking-activated shear Raman bands in $T'$-MoTe$_2$ , 2016, 1602.03566.

[16]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[17]  Jun Yan,et al.  Activation of New Raman Modes by Inversion Symmetry Breaking in Type II Weyl Semimetal Candidate T'-MoTe2. , 2016, Nano letters.

[18]  T. Björkman Testing several recent van der Waals density functionals for layered structures. , 2014, The Journal of chemical physics.

[19]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[20]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[21]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[22]  Kazuhito Tsukagoshi,et al.  Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe₂. , 2014, ACS nano.

[23]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[24]  Kazuhito Tsukagoshi,et al.  Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits , 2014, Advanced materials.

[25]  B. Tay,et al.  Evolution of Raman Scattering and Electronic Structure of Ultrathin Molybdenum Disulfide by Oxygen Chemisorption , 2015 .

[26]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[27]  P. Kim,et al.  Electron and optical phonon temperatures in electrically biased graphene. , 2010, Physical review letters.

[28]  Aaron M. Jones,et al.  Excitonic luminescence upconversion in a two-dimensional semiconductor , 2015, Nature Physics.

[29]  Yan Xin,et al.  Field-effect transistors based on few-layered α-MoTe(2). , 2014, ACS nano.

[30]  Jean-Christophe Charlier,et al.  Identification of individual and few layers of WS2 using Raman Spectroscopy , 2013, Scientific Reports.

[31]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[32]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[33]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[34]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[35]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[36]  Manuel Cardona,et al.  Light Scattering in Solids , 2000 .

[37]  L. Wirtz,et al.  Unified Description of the Optical Phonon Modes in N-Layer MoTe2. , 2015, Nano letters.

[38]  L. Dai,et al.  Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe 2 , 2016, 1602.05692.

[39]  M. Fuhrer,et al.  Helicity-resolved Raman scattering of MoS₂, MoSe₂, WS₂, and WSe₂ atomic layers. , 2015, Nano letters.

[40]  Manuel Cardona,et al.  Light Scattering in Solids VII , 2000 .