Network Analysis of the SourceForge.net Community

Software is central to the functioning of modern computer-based society. The OSS (Open Source Software) phenomenon is a novel, widely growing approach to develop both applications and infrastructure software. In this research, we studied the community network of the SourceForge.net, especially the structure and evolution of the community network, to understand the Open Source Software movement. We applied three different analyses on the network, including structure analysis, centrality analysis and path analysis. By applying these analyses, we are able to gain insights of the network development and its influence to individual developments.

[1]  David E. Hiebeler,et al.  The Swarm Simulation System and Individual-Based Modeling , 1994 .

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[4]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[5]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[6]  Robert L. Axtell,et al.  Aligning simulation models: A case study and results , 1996, Comput. Math. Organ. Theory.

[7]  Yongqin Gao,et al.  Analysis and Modeling of the Open Source Software Community , 2003 .

[8]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[9]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[10]  Martin Suter,et al.  Small World , 2002 .

[11]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[12]  Xerox,et al.  The Small World , 1999 .

[13]  Albert,et al.  Dynamics of complex systems: scaling laws for the period of boolean networks , 2000, Physical review letters.

[14]  Neo D. Martinez,et al.  Two degrees of separation in complex food webs , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Yongqin Gao,et al.  Topology and Evolution of the Open Source Software Community , 2003 .

[16]  Béla Bollobás,et al.  Random Graphs , 1985 .

[17]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[18]  L. Milne,et al.  The Balance of Nature , 1953, Oryx.

[19]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. L. The Balance of Nature , 1870, Nature.

[21]  G. Madey,et al.  A MULTI-MODEL DOCKING EXPERIMENT OF DYNAMIC SOCIAL NETWORK SIMULATIONS , 2003 .

[22]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.