Structure-aware Fisheye Views for Efficient Large Graph Exploration

Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views. Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies demonstrate that our structure-aware fisheye views improve layout readability and user performance.

[1]  Yehuda Koren,et al.  Topological fisheye views for visualizing large graphs , 2004, IEEE Transactions on Visualization and Computer Graphics.

[2]  Helen C. Purchase,et al.  Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.

[3]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[4]  Jean-Daniel Fekete,et al.  Author Manuscript, Published in "sigchi Conference on Human Factors in Computing Systems Topology-aware Navigation in Large Networks , 2022 .

[5]  Ben Shneiderman,et al.  Improving Graph Drawing Readability by Incorporating Readability Metrics : A Software Tool for Network Analysts , 2009 .

[6]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[7]  Michael Jünger,et al.  Exact and Heuristic Algorithms for 2-Layer Straightline Crossing Minimization , 1995, GD.

[8]  Chi-Wing Fu,et al.  Revisiting Stress Majorization as a Unified Framework for Interactive Constrained Graph Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[9]  Hanghang Tong,et al.  iSphere: Focus+Context Sphere Visualization for Interactive Large Graph Exploration , 2017, CHI.

[10]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[11]  Catherine Plaisant,et al.  Navigation patterns and usability of zoomable user interfaces with and without an overview , 2002, TCHI.

[12]  Peter Eades,et al.  Multilevel Visualization of Clustered Graphs , 1996, GD.

[13]  Peter J. Stuckey,et al.  Exploration of Networks using overview+detail with Constraint-based cooperative layout , 2008, IEEE Transactions on Visualization and Computer Graphics.

[14]  Tim Dwyer,et al.  Scalable, Versatile and Simple Constrained Graph Layout , 2009, Comput. Graph. Forum.

[15]  Peter Eades,et al.  Effects of Crossing Angles , 2008, 2008 IEEE Pacific Visualization Symposium.

[16]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[17]  Y. Koren,et al.  Dig-CoLa: directed graph layout through constrained energy minimization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[18]  Jens Gerken,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006 .

[19]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[20]  M. Sheelagh T. Carpendale,et al.  Edgelens: an interactive method for managing edge congestion in graphs , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[21]  Christophe Hurter,et al.  MoleView: An Attribute and Structure-Based Semantic Lens for Large Element-Based Plots , 2011, IEEE Transactions on Visualization and Computer Graphics.

[22]  Kim Marriott,et al.  Topology Preserving Constrained Graph Layout , 2009, GD.

[23]  Manojit Sarkar,et al.  Graphical fisheye views of graphs , 1992, CHI.

[24]  Rok Sosic,et al.  SNAP , 2016, ACM Trans. Intell. Syst. Technol..

[25]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  John T. Stasko,et al.  Tasks for Multivariate Network Analysis , 2013, Multivariate Network Visualization.

[27]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[28]  Stephen G. Kobourov,et al.  Visualizing Large Graphs with Compound-Fisheye Views and Treemaps , 2004, GD.

[29]  James R. Eagan,et al.  SchemeLens: A Content-Aware Vector-Based Fisheye Technique for Navigating Large Systems Diagrams , 2016, IEEE Transactions on Visualization and Computer Graphics.

[30]  Martin Wattenberg,et al.  ManyEyes: a Site for Visualization at Internet Scale , 2007, IEEE Transactions on Visualization and Computer Graphics.

[31]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[32]  Tamara Munzner,et al.  Exploring Large Graphs in 3D Hyperbolic Space , 1998, IEEE Computer Graphics and Applications.

[33]  Paul Vickers,et al.  A survey of two-dimensional graph layout techniques for information visualisation , 2013, Inf. Vis..

[34]  Naftali Kadmon,et al.  A Polyfocal Projection for Statistical Surfaces , 1978 .

[35]  Heidrun Schumann,et al.  CGV - An interactive graph visualization system , 2009, Comput. Graph..

[36]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[37]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[38]  Peter Eades,et al.  Shape-Based Quality Metrics for Large Graph Visualization , 2015, J. Graph Algorithms Appl..

[39]  Frances Paulisch,et al.  Using constraints to achieve stability in automatic graph layout algorithms , 1990, CHI '90.

[40]  G. Cumming Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis , 2011 .

[41]  Heidrun Schumann,et al.  Fisheye Tree Views and Lenses for Graph Visualization , 2006, Tenth International Conference on Information Visualisation (IV'06).

[42]  Zhilin Li,et al.  Optimizing the balance between area and orientation distortions for variable-scale maps , 2016 .

[43]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Jarke J. van Wijk,et al.  A model for smooth viewing and navigation of large 2D information spaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[45]  Kim Marriott,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[46]  Peter J. Passmore,et al.  A User Study on Curved Edges in Graph Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[47]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[48]  Pierre Dragicevic,et al.  GraphDice: A System for Exploring Multivariate Social Networks , 2010, Comput. Graph. Forum.

[49]  A. F. Beardon,et al.  The Poincaré Metric of Plane Domains , 1978 .

[50]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[51]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[52]  Robert F. Cohen,et al.  Online Animated Graph Drawing for Web Navigation , 1997, GD.

[53]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[54]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .