Process output nonclassicality and nonclassicality depth of quantum-optical channels

We introduce a quantum-optical notion of nonclassicality that we call as the process output nonclassicality for multimode quantum channels. The motivation comes from an information-theoretic point of view and the emphasis is on the output states of a channel. We deem a channel to be `classical' if its outputs are always classical irrespective of the input, i.e., if the channel is nonclassicality breaking, and nonclassical otherwise. Our condition is stronger than the one considered by Rahimi-Keshari et al. [PRL {\bf 110}, 160401 (2013)] and we compare the two approaches. Using our framework we then quantify the nonclassicality of a quantum process by introducing a noise-robustness type of measure that we call as the nonclassicality depth of a channel. It characterizes a certain threshold noise beyond which a given channel outputs only classical states. We achieve this by generalizing a prescription by Lee [PRA {\bf 44}, R2775 (1991)] to multimode states and then by extension to multimode channels.

[1]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[2]  V. Man'ko,et al.  Hilbert-Schmidt distance and non-classicality of states in quantum optics , 2000 .

[3]  J. Solomon Ivan,et al.  Generation and distillation of non-Gaussian entanglement from nonclassical photon statistics , 2011, Quantum Information Processing.

[4]  J. Eisert,et al.  Multi-mode bosonic Gaussian channels , 2008, 0804.0511.

[5]  Lütkenhaus,et al.  Nonclassical effects in phase space. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  Jan Perina,et al.  State reconstruction of a multimode twin beam using photodetection , 2013, 1302.0156.

[7]  J. Solomon Ivan,et al.  Entanglement and nonclassicality for multimode radiation-field states , 2010, 1009.6104.

[8]  R. Simon,et al.  The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.

[9]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[10]  Paulina Marian,et al.  Quantifying nonclassicality of one-mode Gaussian states of the radiation field. , 2002, Physical review letters.

[11]  Martin B Plenio,et al.  Entangling power of passive optical elements. , 2003, Physical review letters.

[12]  B. Baseia,et al.  On the measure of nonclassicality of field states , 2003 .

[13]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[14]  Bart Demoen,et al.  Completely positive quasi-free maps of the CCR-algebra , 1979 .

[15]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[16]  Krishna Kumar Sabapathy,et al.  Robustness of non-Gaussian entanglement against noisy amplifier and attenuator environments. , 2011, Physical review letters.

[17]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[18]  M. B. Plenio,et al.  Squeezing the limit: quantum benchmarks for the teleportation and storage of squeezed states , 2008, 0808.2260.

[19]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[20]  N. Lutkenhaus,et al.  Security of coherent-state quantum cryptography in the presence of Gaussian noise , 2006, quant-ph/0608015.

[21]  Göran Lindblad,et al.  Cloning the quantum oscillator , 2000 .

[22]  A I Lvovsky,et al.  Experimental characterization of bosonic creation and annihilation operators. , 2012, Physical review letters.

[23]  Carlton M. Caves,et al.  Mixing nonclassical pure states in a linear-optical network almost always generates modal entanglement , 2013, 1308.6346.

[24]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[25]  Krishna Kumar Sabapathy Quantum-optical channels that output only classical states , 2015 .

[26]  W. Vogel,et al.  Quantification of Nonclassicality , 2009, 0904.3390.

[27]  J. Smolin,et al.  Quantum communication with Gaussian channels of zero quantum capacity , 2011 .

[28]  R. Simon,et al.  Nonclassicality breaking is the same as entanglement breaking for bosonic Gaussian channels , 2013 .

[29]  S. Olivares,et al.  Optimized teleportation in Gaussian noisy channels , 2003, quant-ph/0309097.

[30]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[31]  John A. Smolin,et al.  An exactly solvable model for quantum communications , 2013, Nature.

[32]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[33]  Raúl García-Patrón,et al.  Continuous-variable quantum key distribution protocols over noisy channels. , 2008, Physical review letters.

[34]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[35]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[36]  V. Dodonov,et al.  Classicality and anticlassicality measures of pure and mixed quantum states , 2003, quant-ph/0302019.

[37]  Timothy C. Ralph,et al.  Quantum error correction of continuous-variable states against Gaussian noise , 2011 .

[38]  Wang Xiang-bin Theorem for the beam-splitter entangler , 2002 .

[39]  F. Nori,et al.  Increasing relative nonclassicality quantified by standard entanglement potentials by dissipation and unbalanced beam splitting , 2015, 1507.08587.

[40]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[41]  Hall,et al.  Gaussian noise and quantum-optical communication. , 1994, Physical review. A, Atomic, molecular, and optical physics.