Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures

Abstract We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double‐stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo‐DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs. We show that the genuine DCRs have significantly higher degrees of freedom in their movement along the thread axle than the hybridized DCR precursors. Interlocking of DNA in DCRs might serve as a versatile principle for constructing functional DNA nanostructures where the movement of the subunits is restricted within precisely confined tolerance ranges.

[1]  M. Famulok,et al.  A novel family of structurally stable double stranded DNA catenanes. , 2014, Chemical communications.

[2]  Itamar Willner,et al.  Programmed dynamic topologies in DNA catenanes. , 2012, Angewandte Chemie.

[3]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[4]  Sai Bi,et al.  Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification. , 2013, The Analyst.

[5]  M. Mayor,et al.  Molecular daisy chains. , 2013, Chemical Society reviews.

[6]  J. Vohlídal,et al.  Terminology and nomenclature for macromolecular rotaxanes and pseudorotaxanes (IUPAC Recommendations 2012) , 2012 .

[7]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[8]  V. Linko,et al.  The enabled state of DNA nanotechnology. , 2013, Current opinion in biotechnology.

[9]  Christof M Niemeyer,et al.  Rational design of DNA nanoarchitectures. , 2006, Angewandte Chemie.

[10]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[11]  Friedrich C. Simmel,et al.  Nukleinsäure‐basierte molekulare Werkzeuge , 2011 .

[12]  Hiroyuki Asanuma,et al.  Light-driven DNA nanomachine with a photoresponsive molecular engine. , 2014, Accounts of chemical research.

[13]  Cees Dekker,et al.  Motor Proteins at Work for Nanotechnology , 2007, Science.

[14]  S. Kojima,et al.  Disulphide cross-linking between the stator and the bearing components in the bacterial flagellar motor. , 2010, Journal of biochemistry.

[15]  M. Famulok,et al.  Konstruktionsprinzip für DNA‐Rotaxane mit mechanisch versteifter PX100‐Achse , 2012 .

[16]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[17]  Itamar Willner,et al.  Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines , 2013, Nature Communications.

[18]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[19]  Udo Feldkamp,et al.  Rationaler Entwurf von DNA‐Nanoarchitekturen , 2006 .

[20]  Michael Famulok,et al.  I-motif-programmed functionalization of DNA nanocircles. , 2013, Journal of the American Chemical Society.

[21]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[22]  H. Asanuma,et al.  A photon-fueled DNA nanodevice that contains two different photoswitches. , 2012, Angewandte Chemie.

[23]  Michael Famulok,et al.  Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. , 2012, Angewandte Chemie.

[24]  F. Vögtle,et al.  Verknoten und Durchfädeln von Molekülen: Chemie und Chiralität molekularer Knoten und ihrer Ensembles , 2005 .

[25]  Michael Famulok,et al.  Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.

[26]  Fritz Vögtle,et al.  Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies. , 2005, Angewandte Chemie.

[27]  Alexander Heckel,et al.  Construction of a structurally defined double-stranded DNA catenane. , 2011, Nano letters.

[28]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[29]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[30]  Itamar Willner,et al.  DNA-based machines. , 2006, Organic & biomolecular chemistry.

[31]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[32]  H. Dietz,et al.  Placing molecules with Bohr radius resolution using DNA origami. , 2016, Nature nanotechnology.

[33]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[34]  H. Sugiyama,et al.  Single strand DNA catenane synthesis using the formation of G-quadruplex structure. , 2012, Bioorganic & medicinal chemistry.

[35]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[36]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[37]  Michael Famulok,et al.  Mechanically interlocked DNA nanostructures for functional devices. , 2014, Accounts of chemical research.

[38]  Michael Famulok,et al.  Interlocked DNA nanostructures controlled by a reversible logic circuit , 2014, Nature Communications.

[39]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[40]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[41]  Julián Valero,et al.  Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle. , 2014, Angewandte Chemie.

[42]  Euan R. Kay,et al.  Die Evolution molekularer Maschinen , 2015 .

[43]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.