All‐Printed Flexible and Stretchable Electronics

A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability.

[1]  S. J. French,et al.  THE SYSTEM GALLIUM-INDIUM , 1937 .

[2]  W. J. Svirbely,et al.  The Gallium–Indium System , 1954 .

[3]  D. Zrnić,et al.  On the resistivity and surface tension of the eutectic alloy of gallium and indium , 1969 .

[4]  Travis J. Anderson,et al.  The Ga-In (Gallium-Indium) System , 1991 .

[5]  E. Jagla Stable propagation of an ordered array of cracks during directional drying. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  W. Lee,et al.  Why do drying films crack? , 2004, Langmuir : the ACS journal of surfaces and colloids.

[7]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[8]  J. Rogers,et al.  Stretchable Electronics: Materials Strategies and Devices , 2008 .

[9]  Shuo-Hung Chang,et al.  An integrated flexible temperature and tactile sensing array using PI-copper films ☆ , 2008 .

[10]  B. Ziaie,et al.  A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels , 2008 .

[11]  Yongtaek Hong,et al.  Stable Stretchable Silver Electrode Directly Deposited on Wavy Elastomeric Substrate , 2009, IEEE Electron Device Letters.

[12]  Anders Rydberg,et al.  Liquid metal stretchable unbalanced loop antenna , 2009 .

[13]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[14]  H. Choi,et al.  Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. , 2010, Nature nanotechnology.

[15]  Rebecca K. Kramer,et al.  Hyperelastic pressure sensing with a liquid-embedded elastomer , 2010 .

[16]  G. Whitesides,et al.  Stretchable Microfluidic Radiofrequency Antennas , 2010, Advanced materials.

[17]  Robert J. Wood,et al.  Soft curvature sensors for joint angle proprioception , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  R. Wood,et al.  A non-differential elastomer curvature sensor for softer-than-skin electronics , 2011 .

[19]  P. Weiss,et al.  Directing substrate morphology via self-assembly: ligand-mediated scission of gallium-indium microspheres to the nanoscale. , 2011, Nano letters.

[20]  M. Dickey,et al.  Inherently aligned microfluidic electrodes composed of liquid metal. , 2011, Lab on a chip.

[21]  Tom Sterken,et al.  Cyclic endurance reliability of stretchable electronic substrates , 2011, Microelectron. Reliab..

[22]  John A Rogers,et al.  Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors , 2012, Nature Communications.

[23]  Magnus Jobs,et al.  Liquid alloy printing of microfluidic stretchable electronics. , 2012, Lab on a chip.

[24]  J. Muth,et al.  3D Printing of Free Standing Liquid Metal Microstructures , 2013, Advanced materials.

[25]  Michael D. Dickey,et al.  Self‐Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics , 2013, Advanced materials.

[26]  Wei Gao,et al.  Highly conductive and stretchable polymer composites based on graphene/MWCNT network. , 2013, Chemical communications.

[27]  M. Dickey,et al.  Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core , 2013 .

[28]  M. Dickey,et al.  Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. , 2013, Lab on a chip.

[29]  Yi Zheng,et al.  Direct Desktop Printed-Circuits-on-Paper Flexible Electronics , 2013, Scientific Reports.

[30]  Rebecca K. Kramer,et al.  Masked Deposition of Gallium‐Indium Alloys for Liquid‐Embedded Elastomer Conductors , 2013 .

[31]  Goangseup Zi,et al.  Design and Fabrication of Novel Stretchable Device Arrays on a Deformable Polymer Substrate with Embedded Liquid‐Metal Interconnections , 2014, Advanced materials.

[32]  Seungho Yu,et al.  Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. , 2014, The Journal of chemical physics.

[33]  Carmel Majidi,et al.  High‐Density Soft‐Matter Electronics with Micron‐Scale Line Width , 2014, Advanced materials.

[34]  Meng Gao,et al.  A handy liquid metal based electroosmotic flow pump. , 2014, Lab on a chip.

[35]  Michael D. Dickey,et al.  Emerging Applications of Liquid Metals Featuring Surface Oxides , 2014, ACS applied materials & interfaces.

[36]  Jing Liu,et al.  Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics , 2014 .

[37]  Rebecca K. Kramer,et al.  Direct Writing of Gallium‐Indium Alloy for Stretchable Electronics , 2014 .

[38]  Yi Zheng,et al.  Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism , 2014, Scientific Reports.

[39]  Q. Wang,et al.  Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual‐Trans Printing , 2015, Advanced materials.

[40]  Ishan D. Joshipura,et al.  Methods to pattern liquid metals , 2015 .

[41]  Rebecca K. Kramer,et al.  Mechanically Sintered Gallium–Indium Nanoparticles , 2015, Advanced materials.