Carbon coated textiles for flexible energy storage

This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ∼0.25 A·g−1 achieved a high gravimetric and areal capacitance, an average of 85 F·g−1 on cotton lawn and polyester microfiber, both corresponding to ∼0.43 F·cm−2.

[1]  Pierre-Louis Taberna,et al.  High power density electrodes for Carbon supercapacitor applications , 2005 .

[2]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[3]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .

[4]  Richard A. Scott,et al.  Textiles for Protection , 2005 .

[5]  Xing Xie,et al.  Paper supercapacitors by a solvent-free drawing method† , 2011 .

[6]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[7]  Joan E. Shields,et al.  Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density , 2006 .

[8]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[9]  R. White Silver in healthcare: its antimicrobial efficacy and safety in use , 2013 .

[10]  A. Laforgue All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers , 2011 .

[11]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[12]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[13]  Dongsheng Ma,et al.  The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes , 2011 .

[14]  Yuping Wu,et al.  Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes , 2008 .

[15]  V. Presser,et al.  “Brick‐and‐Mortar” Self‐Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites , 2011 .

[16]  Po-Chiang Chen,et al.  Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates , 2010 .

[17]  Yi Cui,et al.  Aqueous supercapacitors on conductive cotton , 2010 .

[18]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[19]  Yang Shao-Horn,et al.  Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors , 2011 .

[20]  Yury Gogotsi,et al.  Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors , 2007 .

[21]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[22]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[23]  Sabine Seymour,et al.  Fashionable Technology: The Intersection of Design, Fashion, Science and Technology , 2008 .

[24]  Bingqing Wei,et al.  Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric , 2009 .

[25]  M. Thommes,et al.  Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons , 2009 .

[26]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[27]  Wendy G. Pell,et al.  Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge , 2001 .

[28]  Subodh G. Mhaisalkar,et al.  Printable photo-supercapacitor using single-walled carbon nanotubes , 2011 .

[29]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[30]  P. Prosini,et al.  Electrochemical studies of hydrogen evolution, storage and oxidation on carbon nanotube electrodes , 2003 .

[31]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[32]  G. Tröster,et al.  Woven Electronic Fibers with Sensing and Display Functions for Smart Textiles , 2010, Advanced materials.