Partial Convergence and Continuity of Lattice-Valued Possibilistic Measures

The notion of continuity from above (upper continuity) for lattice-valued possibilistic measures as investigated in [7] has been proved to be a rather strong condition when imposed as demand on such a measure. Hence, our aim will be to introduce some versions of this upper continuity weakened in the sense that the conditions imposed in [7] to the whole definition domain of the possibilistic measure in question will be restricted just to certain subdomains. The resulting notion of partial upper convergence and continuity of lattice-valued possibilistic measures will be analyzed in more detail and some results will be introduced and proved.