Automatic kernel clustering with bee colony optimization algorithm

Cluster analysis is important in data mining, especially if there is unsupervised data. Recently, many clustering methods have been proposed. Unfortunately, most of these require the definition of the number of clusters, in advance. This study addresses this weakness by proposing a new automatic clustering algorithm: automatic kernel clustering with bee colony optimization (AKC-BCO). AKC-BCO determines the appropriate number of clusters and assigns data points to correct clusters. This is accomplished by the kernel function, which increases clustering capability. This method is validated using several benchmark data sets. The result is compared with several existing automatic clustering methods. The experiment results demonstrate that the proposed AKC-BCO is more stable and accurate than others. Furthermore, the proposed method is also applied to a real-world medical problem.

[1]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[2]  K. Huang,et al.  A synergistic automatic clustering technique (SYNERACT) for multispectral image Analysis , 2002 .

[3]  Yangyang Li,et al.  Gene transposon based clone selection algorithm for automatic clustering , 2012, Inf. Sci..

[4]  Ujjwal Maulik,et al.  Genetic clustering for automatic evolution of clusters and application to image classification , 2002, Pattern Recognit..

[5]  Lei Zhang,et al.  A novel ant-based clustering algorithm using the kernel method , 2011, Inf. Sci..

[6]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops , 2011, Inf. Sci..

[8]  Xiujuan Lei,et al.  The clustering model and algorithm of PPI network based on propagating mechanism of artificial bee colony , 2013, Inf. Sci..

[9]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[10]  Xianda Zhang,et al.  A robust dynamic niching genetic algorithm with niche migration for automatic clustering problem , 2010, Pattern Recognit..

[11]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[12]  Andries Petrus Engelbrecht,et al.  Using sequential deviation to dynamically determine the number of clusters found by a local network neighbourhood artificial immune system , 2011, Appl. Soft Comput..

[13]  B. Everitt,et al.  A Monte Carlo Study of the Recovery of Cluster Structure in Binary Data by Hierarchical Clustering Techniques. , 1987, Multivariate behavioral research.

[14]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[15]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[16]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[17]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[18]  Olfa Nasraoui,et al.  Mining Evolving User Profiles in Noisy Web Clickstream Data with a Scalable Immune System Clustering Algorithm , 2003 .

[19]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[20]  Doheon Lee,et al.  A kernel-based subtractive clustering method , 2005, Pattern Recognit. Lett..

[21]  Dao-Qiang Zhang,et al.  Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm , 2003, Neural Processing Letters.

[22]  Vipin Kumar,et al.  Introduction to Data Mining, (First Edition) , 2005 .

[23]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[24]  Josiane Zerubia,et al.  Fully unsupervised fuzzy clustering with entropy criterion , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[25]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  G H Ball,et al.  A clustering technique for summarizing multivariate data. , 1967, Behavioral science.

[27]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[28]  Francisco J. Rodríguez,et al.  An artificial bee colony algorithm for the maximally diverse grouping problem , 2013, Inf. Sci..

[29]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Dervis Karaboga,et al.  Artificial bee colony programming for symbolic regression , 2012, Inf. Sci..

[31]  R. J. Kuo,et al.  Integration of particle swarm optimization and genetic algorithm for dynamic clustering , 2012, Inf. Sci..

[32]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[33]  Junjie Li,et al.  Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions , 2011, Inf. Sci..

[34]  Lingling Huang,et al.  Enhancing artificial bee colony algorithm using more information-based search equations , 2014, Inf. Sci..

[35]  Lin-Yu Tseng,et al.  A genetic approach to the automatic clustering problem , 2001, Pattern Recognit..

[36]  Amit Konar,et al.  Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm , 2008, Pattern Recognit. Lett..

[37]  Magdalene Marinaki,et al.  A hybrid discrete Artificial Bee Colony - GRASP algorithm for clustering , 2009, 2009 International Conference on Computers & Industrial Engineering.

[38]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[39]  Dervis Karaboga,et al.  Fuzzy clustering with artificial bee colony algorithm , 2010 .

[40]  Abolfazl Toroghi Haghighat,et al.  Data Clustering Using Bee Colony Optimization , 2012 .

[41]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[42]  Erik K. Antonsson,et al.  Dynamic partitional clustering using evolution strategies , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[43]  Ali R. Yildiz,et al.  Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach , 2013, Inf. Sci..

[44]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[45]  Smriti Srivastava,et al.  A new Kernelized hybrid c-mean clustering model with optimized parameters , 2010, Appl. Soft Comput..

[46]  R. J. Kuo,et al.  Application of ant K-means on clustering analysis , 2005 .

[47]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[48]  Christophe Rosenberger,et al.  Unsupervised clustering method with optimal estimation of the number of clusters: application to image segmentation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[49]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[50]  Z. Hubálek COEFFICIENTS OF ASSOCIATION AND SIMILARITY, BASED ON BINARY (PRESENCE‐ABSENCE) DATA: AN EVALUATION , 1982 .

[51]  Mehmet Engin,et al.  Early prostate cancer diagnosis by using artificial neural networks and support vector machines , 2009, Expert Syst. Appl..

[52]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[53]  Hsing-Chih Tsai,et al.  Integrating the artificial bee colony and bees algorithm to face constrained optimization problems , 2014, Inf. Sci..

[54]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.