Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides*

Heparan sulfate (HS) polysaccharides interact with numerous proteins at the cell surface and orchestrate many different biological functions. Though many functions of HS are well established, only a few specific structures can be attributed to HS functions. The extreme diversity of HS makes chemical synthesis of specific bioactive HS structures a cumbersome and tedious undertaking that requires laborious and careful functional group manipulations. Now that many of the enzymes involved in HS biosynthesis are characterized, we show in this study how one can rapidly and easily assemble bioactive HS structures with a set of cloned enzymes. We have demonstrated the feasibility of this new approach to rapidly assemble antithrombin III-binding classical and non-classical anticoagulant polysaccharide structures for the first time.

[1]  Balagurunathan Kuberan,et al.  Enzymatic synthesis of antithrombin III–binding heparan sulfate pentasaccharide , 2003, Nature Biotechnology.

[2]  D. Beeler,et al.  Rapid two-step synthesis of mitrin from heparosan: a replacement for heparin. , 2003, Journal of the American Chemical Society.

[3]  Zhengliang L. Wu,et al.  The Involvement of Heparan Sulfate (HS) in FGF1/HS/FGFR1 Signaling Complex* , 2003, The Journal of Biological Chemistry.

[4]  A. Malmström,et al.  Heparan Sulfate 3-O-Sulfotransferase Isoform 5 Generates Both an Antithrombin-binding Site and an Entry Receptor for Herpes Simplex Virus, Type 1* , 2002, The Journal of Biological Chemistry.

[5]  Balagurunathan Kuberan,et al.  Analysis of heparan sulfate oligosaccharides with ion pair-reverse phase capillary high performance liquid chromatography-microelectrospray ionization time-of-flight mass spectrometry. , 2002, Journal of the American Chemical Society.

[6]  Zhengliang L. Wu,et al.  A new strategy for defining critical functional groups on heparan sulfate , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  S. Selleck,et al.  Order out of chaos: assembly of ligand binding sites in heparan sulfate. , 2002, Annual review of biochemistry.

[8]  J. J. Schwartz,et al.  The Effect of Precursor Structures on the Action of Glucosaminyl 3-O-Sulfotransferase-1 and the Biosynthesis of Anticoagulant Heparan Sulfate* , 2001, The Journal of Biological Chemistry.

[9]  J. Esko,et al.  Cloning, Golgi Localization, and Enzyme Activity of the Full-length Heparin/Heparan Sulfate-Glucuronic Acid C5-epimerase* , 2001, The Journal of Biological Chemistry.

[10]  K. Bame Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. , 2001, Glycobiology.

[11]  K. Kimata,et al.  Substrate specificity of the heparan sulfate hexuronic acid 2-O-sulfotransferase. , 2001, Biochemistry.

[12]  J. Esko,et al.  Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. , 2001, The Journal of biological chemistry.

[13]  R. Linhardt,et al.  Enzymatic modification of heparan sulfate on a biochip promotes its interaction with antithrombin III. , 2000, Biochemical and biophysical research communications.

[14]  K. Yoshida,et al.  The Occurrence of Three Isoforms of Heparan Sulfate 6-O-Sulfotransferase Having Different Specificities for Hexuronic Acid Adjacent to the TargetedN-Sulfoglucosamine* , 2000, The Journal of Biological Chemistry.

[15]  K. Yoshida,et al.  Heparan Sulfate d-Glucosaminyl 3-O-Sulfotransferase-3A SulfatesN-Unsubstituted Glucosamine Residues* , 1999, The Journal of Biological Chemistry.

[16]  R. Eisenberg,et al.  A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry , 1999, Cell.

[17]  N. Copeland,et al.  Multiple Isoforms of Heparan Sulfate d-Glucosaminyl 3-O-Sulfotransferase , 1999, The Journal of Biological Chemistry.

[18]  J. J. Schwartz,et al.  Expression of Heparan Sulfate d-Glucosaminyl 3-O-Sulfotransferase Isoforms Reveals Novel Substrate Specificities* , 1999, The Journal of Biological Chemistry.

[19]  M. Götte,et al.  Functions of cell surface heparan sulfate proteoglycans. , 1999, Annual review of biochemistry.

[20]  A. Lander,et al.  Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. , 1999, Glycobiology.

[21]  I. MacRae,et al.  Adenosine 5′-Phosphosulfate Kinase from Penicillium chrysogenum , 1998, The Journal of Biological Chemistry.

[22]  U. Desai,et al.  Mechanism of Heparin Activation of Antithrombin , 1998, The Journal of Biological Chemistry.

[23]  M. Jalkanen,et al.  Biosynthesis of Heparin/Heparan Sulfate , 1997, The Journal of Biological Chemistry.

[24]  S. Stringer,et al.  Specific Binding of the Chemokine Platelet Factor 4 to Heparan Sulfate* , 1997, The Journal of Biological Chemistry.

[25]  J. J. Schwartz,et al.  Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? , 1997, The Journal of clinical investigation.

[26]  D. Stephan,et al.  Gene and other biological therapies for vascular diseases , 1997, Fundamental & clinical pharmacology.

[27]  Jian Liu,et al.  Purification of Heparan Sulfate D-Glucosaminyl 3-O-Sulfotransferase* , 1996, The Journal of Biological Chemistry.

[28]  M. Salmivirta,et al.  Heparan sulfate : a piece of information , 2004 .

[29]  U. Lindahl,et al.  Biosynthesis of heparin/heparan sulfate. Purification of the D-glucuronyl C-5 epimerase from bovine liver. , 1994, The Journal of biological chemistry.

[30]  C. Hirschberg,et al.  Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. , 1994, The Journal of biological chemistry.

[31]  U. Lindahl,et al.  Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions. , 1991, The Biochemical journal.

[32]  D. Atha,et al.  Contribution of 3-O- and 6-O-sulfated glucosamine residues in the heparin-induced conformational change in antithrombin III. , 1987, Biochemistry.

[33]  D. Atha,et al.  Sequence variation in heparin octasaccharides with high affinity for antithrombin III. , 1984, Biochemistry.

[34]  G. Torri,et al.  Total synthesis of a heparin pentasaccharide fragment having high affinity for antithrombin III , 1984 .

[35]  D. Atha,et al.  Evaluation of critical groups required for the binding of heparin to antithrombin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Schmidt,et al.  The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. , 1981, European journal of biochemistry.

[37]  R. Rosenberg,et al.  Anticoagulant Action of Heparin , 1973, Nature.

[38]  R. Rosenberg,et al.  The purification and mechanism of action of human antithrombin-heparin cofactor. , 1973, The Journal of biological chemistry.

[39]  L. Fowler,et al.  Studies on heparin degradation. I. Preparation of ( 35 S) sulphamate derivatives for studies on heparin degrading enzymes of mammalian origin. , 1971, Biochemical pharmacology.

[40]  J. Shively,et al.  Stoichiometry of the nitrous acid deaminative cleavage of model amino sugar glycosides and glycosaminoglycuronans. , 1970, Biochemistry.