Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition

The possible role of ammonia in a future energy infrastructure is discussed. The review is focused on the catalytic decomposition of ammonia as a key step. Other aspects, such as the catalytic removal of ammonia from gasification product gas or direct ammonia fuel cells, are highlighted as well. The more general question of the integration of ammonia in an infrastructure is also covered.

[1]  Vinod M. Janardhanan,et al.  Micro-kinetic modeling of NH3 decomposition on Ni and its application to solid oxide fuel cells , 2011 .

[2]  Zhonghua Zhu,et al.  Halloysite-Nanotube-Supported Ru Nanoparticles for Ammonia Catalytic Decomposition to Produce COx-Free Hydrogen , 2011 .

[3]  C. Hardacre,et al.  TAP studies of ammonia decomposition over Ru and Ir catalysts. , 2011, Physical chemistry chemical physics : PCCP.

[4]  D. Vlachos,et al.  Experimental and theoretical studies of ammonia decomposition activity on Fe-Pt, Co-Pt, and Cu-Pt bimetallic surfaces. , 2011, The Journal of chemical physics.

[5]  C. Au,et al.  Core–shell structured nickel and ruthenium nanoparticles: Very active and stable catalysts for the generation of COx-free hydrogen via ammonia decomposition , 2011 .

[6]  P. Simell,et al.  Thermal plasma-sprayed nickel catalysts in the clean-up of biomass gasification gas , 2011 .

[7]  C. Au,et al.  Cs-modified iron nanoparticles encapsulated in microporous and mesoporous SiO2 for COx-free H2 production via ammonia decomposition , 2011 .

[8]  R. Schomäcker,et al.  Kinetic studies on ammonia decomposition over zirconium oxynitride , 2011 .

[9]  A. Lu,et al.  High-temperature stable, iron-based core-shell catalysts for ammonia decomposition. , 2011, Chemistry.

[10]  C. Au,et al.  Core–shell structured nanoparticles (M@SiO2, Al2O3, MgO; M = Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition , 2010 .

[11]  P. Fornasiero,et al.  Embedded Ru@ZrO2 Catalysts for H2 Production by Ammonia Decomposition , 2010 .

[12]  O. Terasaki,et al.  Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition. , 2010, Journal of the American Chemical Society.

[13]  C. Xu,et al.  Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification , 2010 .

[14]  C. Au,et al.  Core-shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of CO(x)-free hydrogen through ammonia decomposition. , 2010, Chemical communications.

[15]  M. Antonietti,et al.  Mesoporous Fe₃C sponges as magnetic supports and as heterogeneous catalyst , 2010 .

[16]  K. Laasonen,et al.  NH3 adsorption and dissociation on a nanosized iron cluster , 2010 .

[17]  B. Paik,et al.  Catalytic effect of ATiO3 (A = Sr, Ba) on ammonia decomposition during mechanical milling. , 2010, Chemical communications.

[18]  D. Vlachos,et al.  Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction , 2010, Nature Chemistry.

[19]  C. Xu,et al.  Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere , 2010 .

[20]  D. Su,et al.  Structure-function correlations for Ru/CNT in the catalytic decomposition of ammonia. , 2010, ChemSusChem.

[21]  C. Au,et al.  Core-shell structured iron nanoparticles for the generation of COx-free hydrogen via ammonia decomposition , 2010 .

[22]  Shaobin Wang,et al.  Effects of nitrogen doping on the structure of carbon nanotubes (CNTs) and activity of Ru/CNTs in ammonia decomposition , 2010 .

[23]  A. Guerrero-Ruíz,et al.  The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction , 2010 .

[24]  Alexey Serov,et al.  Review of non-platinum anode catalysts for DMFC and PEMFC application , 2009 .

[25]  V. Prasad,et al.  Correlating particle size and shape of supported Ru/gamma-Al2O3 catalysts with NH3 decomposition activity. , 2009, Journal of the American Chemical Society.

[26]  J. Nørskov,et al.  Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles , 2009 .

[27]  R. Fehrmann,et al.  Catalytic Ammonia Decomposition Over Ruthenium Nanoparticles Supported on Nano-Titanates , 2009 .

[28]  Shaobin Wang,et al.  Chromium oxide catalysts for COx-free hydrogen generation via catalytic ammonia decomposition , 2009 .

[29]  Vinay Prasad,et al.  Assessment of Overall Rate Expressions and Multiscale, Microkinetic Model Uniqueness via Experimental Data Injection: Ammonia Decomposition on Ru/γ-Al2O3 for Hydrogen Production , 2009 .

[30]  Hongliang Zhu,et al.  Large-Scale Synthesis of MgCl 2 6NH 3 as an Ammonia Storage Material , 2009 .

[31]  A. Guerrero-Ruíz,et al.  Role of B5-Type Sites in Ru Catalysts used for the NH3 Decomposition Reaction , 2009 .

[32]  W. Arabczyk,et al.  Study of the Kinetics of Ammonia Synthesis and Decomposition on Iron and Cobalt Catalysts , 2009 .

[33]  Yong Lu,et al.  Miniature NH3 cracker based on microfibrous entrapped Ni-CeO2/Al2O3 catalyst monolith for portable fuel cell power supplies , 2009 .

[34]  G. Meng,et al.  Direct ammonia proton-conducting solid oxide fuel cells prepared by a modified suspension spray , 2009 .

[35]  W. Arabczyk,et al.  Studies of the kinetics of two parallel reactions: ammonia decomposition and nitriding of iron catalyst. , 2009, The journal of physical chemistry. A.

[36]  W. Arabczyk,et al.  Catalytic Ammonia Decomposition Over Fe/Fe4N , 2009 .

[37]  Hua Li,et al.  Synthesis of mesoporous tungsten carbide by an impregnation-compaction route, and its NH3 decomposition catalytic activity. , 2008, Dalton transactions.

[38]  Shaobin Wang,et al.  Catalytic decomposition of ammonia over fly ash supported Ru catalysts , 2008 .

[39]  S. Gangwal,et al.  Simultaneous Ammonia and Toluene Decomposition on Tungsten-Based Catalysts for Hot Gas Cleanup , 2008 .

[40]  Di Wang,et al.  Individual Fe-Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. , 2008, Nano letters.

[41]  Vinay Prasad,et al.  Multiscale Model and Informatics-Based Optimal Design of Experiments : Application to the Catalytic Decomposition of Ammonia on Ruthenium , 2008 .

[42]  J. Lauterbach,et al.  Characterization of K-Promoted Ru Catalysts for Ammonia Decomposition Discovered Using High-Throughput Experimentation , 2008 .

[43]  J. Nørskov,et al.  Indirect, reversible high-density hydrogen storage in compact metal ammine salts. , 2008, Journal of the American Chemical Society.

[44]  J. G. Goodwin,et al.  Ammonia Decomposition on Tungsten-Based Catalysts in the Absence and Presence of Syngas , 2008 .

[45]  J. Nørskov,et al.  Ammonia for hydrogen storage: challenges and opportunities , 2008 .

[46]  Hengyong Xu,et al.  Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen , 2008 .

[47]  Weishen Yang,et al.  Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte , 2008 .

[48]  Zhongmin Liu,et al.  Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia , 2008 .

[49]  J. Ganley An intermediate-temperature direct ammonia fuel cell with a molten alkaline hydroxide electrolyte , 2008 .

[50]  Zhongmin Liu,et al.  Preparation and evaluation of ammonia decomposition catalysts by high-throughput technique , 2008 .

[51]  Zhongmin Liu,et al.  Promotion effect of cerium and lanthanum oxides on Ni/SBA-15 catalyst for ammonia decomposition , 2008 .

[52]  Y. Ohtsuka,et al.  Sulfur tolerance of an inexpensive limonite catalyst for high temperature decomposition of ammonia , 2008 .

[53]  A. Longo,et al.  Indium doping in barium cerate : The relation between local symmetry and the formation and mobility of protonic defects , 2007 .

[54]  V. Montiel,et al.  Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles , 2007 .

[55]  Y. Ohtsuka,et al.  Catalytic Performance of Limonite in the Decomposition of Ammonia in the Coexistence of Typical Fuel Gas Components Produced in an Air-Blown Coal Gasification Process , 2007 .

[56]  Y. Ozawa,et al.  Catalytic decomposition of ammonia in simulated coal-derived gas , 2007 .

[57]  Hengyong Xu,et al.  NH3 Decomposition Kinetics on Supported Ru Clusters: Morphology and Particle Size Effect , 2007 .

[58]  D. Su,et al.  Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition. , 2007, Chemical communications.

[59]  Shaobin Wang,et al.  Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts. , 2007, Environmental science & technology.

[60]  J. Goodwin,et al.  Ammonia decomposition on tungsten carbide , 2007 .

[61]  Zhonghua Zhu,et al.  Catalytic ammonia decomposition over Ru/carbon catalysts: The importance of the structure of carbon support , 2007 .

[62]  Zhonghua Zhu,et al.  Catalytic ammonia decomposition over CMK-3 supported Ru catalysts: Effects of surface treatments of supports , 2007 .

[63]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[64]  G. Fournier,et al.  High performance direct ammonia solid oxide fuel cell , 2006 .

[65]  M. Ouzounidou,et al.  NH3 decomposition in a single-chamber proton conducting cell , 2006 .

[66]  Zhongmin Liu,et al.  Influence of Preparation Conditions on the Catalytic Performance of MoNx/SBA-15 for Ammonia Decomposition , 2006 .

[67]  S. Kaskel,et al.  Synthesis and characterization of high surface area molybdenum nitride , 2006 .

[68]  Hengyong Xu,et al.  Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect , 2006 .

[69]  S. Yin,et al.  Nanosized Ru on high-surface-area superbasic ZrO2-KOH for efficient generation of hydrogen via ammonia decomposition , 2006 .

[70]  J. Nørskov,et al.  Generation of nanopores during desorption of NH3 from Mg(NH3)6Cl2. , 2006, Journal of the American Chemical Society.

[71]  Hengyong Xu,et al.  Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect , 2005 .

[72]  Y. Ohtsuka,et al.  High Catalytic Performance of Fine Particles of Metallic Iron Formed from Limonite in the Decomposition of a Low Concentration of Ammonia , 2005 .

[73]  J. Nørskov,et al.  Metal ammine complexes for hydrogen storage , 2005 .

[74]  N. Maffei,et al.  Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes , 2005 .

[75]  J. Nørskov,et al.  Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst , 2005 .

[76]  J. Charland,et al.  An intermediate temperature direct ammonia fuel cell using a proton conducting electrolyte , 2005 .

[77]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[78]  S. Yin,et al.  A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications , 2004 .

[79]  C. Au,et al.  On the catalytic nature of VN, Mo2N, and W2N nitrides for NO reduction with hydrogen , 2004 .

[80]  S. Yin,et al.  Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia , 2004 .

[81]  E. Seebauer,et al.  A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia , 2004 .

[82]  W. Raróg-Pilecka,et al.  Ammonia decomposition over the ruthenium catalysts deposited on magnesium–aluminum spinel , 2004 .

[83]  S. Yin,et al.  Investigation on the catalysis of COx-free hydrogen generation from ammonia , 2004 .

[84]  N. Maffei,et al.  An Intermediate-Temperature Ammonia Fuel Cell Using Gd-Doped Barium Cerate Electrolyte , 2004 .

[85]  C. Xu,et al.  Decomposition of ammonia with iron and calcium catalysts supported on coal chars , 2004 .

[86]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[87]  W. Raróg-Pilecka,et al.  Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium , 2003 .

[88]  Robert Schlögl,et al.  Catalytic synthesis of ammonia-a "never-ending story"? , 2003, Angewandte Chemie.

[89]  J. Lu,et al.  Nitriding Iron at Lower Temperatures , 2003, Science.

[90]  D. Szmigiel,et al.  Ammonia decomposition over the carbon-based iron catalyst promoted with potassium , 2002 .

[91]  J. Wolf Liquid-Hydrogen Technology for Vehicles , 2002 .

[92]  G. Marnellos,et al.  Study of ammonia decomposition in a proton conducting solid electrolyte cell , 2002 .

[93]  D. Goodman,et al.  Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications , 2001 .

[94]  C. Pliangos,et al.  Electrochemical promotion of Pd, Fe and distributed Pt catalyst-electrodes , 2000 .

[95]  G. Marnellos,et al.  Synthesis of Ammonia at Atmospheric Pressure with the Use of Solid State Proton Conductors , 2000 .

[96]  J. Nørskov,et al.  Role of Steps in N 2 Activation on Ru(0001) , 1999 .

[97]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[98]  M. Bradford,et al.  Kinetics of NH3Decomposition over Well Dispersed Ru , 1997 .

[99]  M. Muhler,et al.  Effect of Potassium on the Kinetics of Ammonia Synthesis and Decomposition over Fused Iron Catalyst at Atmospheric Pressure , 1997 .

[100]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[101]  Y. Yoshii,et al.  Ammonia decomposition in coal gasification atmospheres , 1996 .

[102]  G. Ertl,et al.  Identification of the "Active Sites" of a Surface-Catalyzed Reaction , 1996, Science.

[103]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[104]  H. Jacobs,et al.  Structure determination of γ′-Fe4N and ϵ-Fe3N , 1995 .

[105]  R. S. Wise,et al.  Synthesis of High Surface Area Molybdenum Nitride in Mixtures of Nitrogen and Hydrogen , 1994 .

[106]  R. S. Wise,et al.  Catalytic NH3 Decomposition by Topotactic Molybdenum Oxides and Nitrides: Effect on Temperature Programmed γ-Mo2N Synthesis , 1994 .

[107]  S. Oyama Preparation and catalytic properties of transition metal carbides and nitrides , 1992 .

[108]  Jukka Leppälahti,et al.  Catalytic conversion of nitrogen compounds in gasification gas , 1991 .

[109]  R. Neményi Controlled Atmospheres for Heat Treatment , 1983 .

[110]  M. Grunze,et al.  Ammonia adsorption and decomposition on a Ni(ll0) surface , 1981 .

[111]  T. Rhodin,et al.  Chemisorption and reaction of NH3 on Ni(111) , 1980 .

[112]  M. Boudart,et al.  Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis , 1973, Science.

[113]  R. V. Hardeveld,et al.  The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum: An infrared and electron-microscopic study , 1966 .

[114]  E. P. Perman The Direct Synthesis of Ammonia , 1905 .