Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices

We show that Haar measures of connected semisimple groups, embedded via a representation into a matrix space, have a homogeneous asymptotic limit when viewed from far away and appropriately rescaled. This is still true if the Haar measure of the semisimple group is replaced by the Haar measure of a irreducible lattice of the group, and the asymptotic measure is the same. In the case of an almost simple group of rank greater than 2, a remainder term is also obtained. This extends and makes precise anterior results of Duke, Rudnick and Sarnak, and Eskin-McMullen in the case of a group variety.

[1]  Tammo tom Dieck,et al.  Representations of Compact Lie Groups , 1985 .

[2]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[3]  W. Schmidt The density of integer points on homogeneous varieties , 1985 .

[4]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[5]  P. Sarnak,et al.  Density of integer points on affine homogeneous varieties , 1993 .

[6]  Alexander Gorodnik,et al.  Distribution of lattice orbits on homogeneous varieties , 2004 .

[7]  Emmanuel Peyre Points de hauteur bornée et géométrie des variétés , 2001 .

[8]  P. Sarnak Diophantine Problems and Linear Groups , 1990 .

[9]  C. McMullen,et al.  Mixing, counting, and equidistribution in Lie groups , 1993 .

[10]  F. Ledrappier Distribution des orbites des réseaux sur le plan réel , 1999 .

[12]  J. Franke,et al.  Rational points of bounded height on Fano varieties , 1989 .

[13]  D. Kleinbock,et al.  BOUNDED ORBITS OF NONQUASIUNIPOTENT FLOWS ON HOMOGENEOUS SPACES , 2002 .

[14]  A. Eskin,et al.  Unipotent flows and counting lattice points on homogeneous varieties , 1996 .

[15]  Hee Oh,et al.  Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants , 2002 .

[16]  A. Katok,et al.  First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity , 1994 .

[17]  C. Roettger Counting invertible matrices and uniform distribution , 2005 .

[18]  R. Howe,et al.  Asymptotic properties of unitary representations , 1979 .

[19]  A. Nogueira Orbit distribution on R2 under the natural action of SL(2,Z) , 2002 .

[20]  S. Helgason Groups and geometric analysis , 1984 .