On the enumeration of certain weighted graphs

We enumerate weighted simple graphs with a natural upper bound condition on the sum of the weight of adjacent vertices. We also compute the generating function of the numbers of these graphs, and prove that it is a rational function. In particular, we show that the generating function for connected bipartite simple graphs is of the form p"1(x)/(1-x)^m^+^1. For nonbipartite simple graphs, we get a generating function of the form p"2(x)/(1-x)^m^+^1(1+x)^l. Here m is the number of vertices of the graph, p"1(x) is a symmetric polynomial of degree at most m, p"2(x) is a polynomial of degree at most m+l, and l is a nonnegative integer. In addition, we give computational results for various graphs.

[1]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[2]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[3]  R. Stanley,et al.  COEFFICIENTS AND ROOTS OF EHRHART POLYNOMIALS , 2004, math/0402148.

[4]  M. Bona Introduction to Enumerative Combinatorics , 2005 .

[5]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[6]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[7]  Meena Mahajan,et al.  Seeking a Vertex of the Planar Matching Polytope in NC , 2004, ESA.

[8]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[9]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[10]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[11]  János Pach,et al.  Combinatorial Geometry , 2012 .

[12]  R. Stanley Combinatorics and commutative algebra , 1983 .

[13]  Michele Vergne,et al.  Residues formulae for volumes and Ehrhart polynomials of convex polytopes. , 2001, math/0103097.

[14]  Enumerating Solutions of a System of Linear Inequalities Related to Magic Squares , 2006 .

[15]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[16]  George E. Andrews,et al.  MacMahon's Partition Analysis: The Omega Package , 2001, Eur. J. Comb..

[17]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[18]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[19]  Guoce Xin A Fast Algorithm for MacMahon's Partition Analysis , 2004, Electron. J. Comb..

[20]  Jonathan David Farley,et al.  Linear extensions of ranked posets, enumerated by descents. A problem of Stanley from the 1981 Banff Conference on Ordered Sets , 2005, Adv. Appl. Math..

[21]  Paul Erdös,et al.  Repeated distances in space , 1988, Graphs Comb..

[22]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[23]  Louis J. Billera,et al.  New perspectives in algebraic combinatorics , 1999 .

[24]  R. Stanley Ordered Structures And Partitions , 1972 .