Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

[1]  Ying Lin,et al.  An improved gyrokinetic electron and fully kinetic ion particle simulation scheme: benchmark with a linear tearing mode , 2011 .

[2]  N. Fisch,et al.  Verification of nonlinear particle simulation of radio frequency waves in tokamak , 2015, 1709.05678.

[3]  H. Okuda,et al.  A Simulation Model for Studying Low-Frequency Microinstabilities , 1978 .

[4]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[5]  Yang Chen,et al.  Particle-in-cell δf gyrokinetic simulations of the microtearing mode , 2016 .

[6]  R. Waltz,et al.  Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulationsa) , 2014 .

[7]  Parker,et al.  Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry. , 1993, Physical review letters.

[8]  Scott E. Parker,et al.  Low frequency fully kinetic simulation of the toroidal ion temperature gradient instability , 2017 .

[9]  Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas , 2008 .

[10]  Charlson C. Kim,et al.  Large-scale gyrokinetic turbulence simulations: Effects of profile variation* , 1999 .

[11]  Jian Liu,et al.  Why is Boris algorithm so good , 2013 .

[12]  R. Groebner,et al.  Global gyrokinetic simulations of the H-mode tokamak edge pedestala) , 2013 .

[13]  William Dorland,et al.  Comparisons of gyrofluid and gyrokinetic simulations , 1994 .

[14]  Yang Chen,et al.  An implicit δf particle-in-cell method with sub-cycling and orbit averaging for Lorentz ions , 2016, J. Comput. Phys..

[15]  Zhihong Lin,et al.  A gyrokinetic electron and fully kinetic ion plasma simulation model , 2005 .

[16]  S. Parker,et al.  Low-noise particle algorithms for extended magnetohydrodynamic closurea) , 2008 .

[17]  Shinji Tokuda,et al.  On Boundary Conditions for a Simulation Plasma in a Magnetic Field , 1977 .

[18]  Yang Chen,et al.  Particle-in-cell simulation with Vlasov ions and drift kinetic electrons , 2009 .

[19]  Elena Belova,et al.  Numerical study of tilt stability of prolate field-reversed configurations , 2000 .

[20]  Yang Chen,et al.  A second-order semi-implicit δfδf method for hybrid simulation , 2013, J. Comput. Phys..

[21]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[22]  W. Lee,et al.  Gyrokinetic particle simulation of ion temperature gradient drift instabilities , 1988 .

[23]  R. Sudan,et al.  Considerations of ion‐temperature‐gradient‐driven turbulence , 1991 .

[24]  K. Duda,et al.  Frequency and Damping Estimation Methods - An Overview , 2011 .

[25]  D. Schnack,et al.  Comparison of kinetic and extended magnetohydrodynamics computational models for the linear ion temperature gradient instability in slab geometry , 2013 .

[26]  W. W. Lee,et al.  Gyrokinetic approach in particle simulation , 1981 .

[27]  R. Waltz,et al.  Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics , 2013 .

[28]  Nearest-Grid-Point Interpolation in Gyrokinetic Particle-in-Cell Simulation , 2002 .

[29]  S. Parker,et al.  A fully nonlinear characteristic method for gyrokinetic simulation , 1993 .

[30]  R. Groebner,et al.  Global gyrokinetic simulation of Tokamak edge pedestal instabilities. , 2012, Physical review letters.

[31]  F. Parra,et al.  Limitations of gyrokinetics on transport time scales , 2008 .