Cross species integration of functional genomics experiments.

There is an increasing recognition of the value in integrating behavioral genomics data across species. The fragmentation of public resources, interoperability, and available representations present challenges due to the array of identifiers used to represent each genome feature. Once data are organized into a coherent collection, they can be integrated using a variety of methods to analyze convergent evidence for the roles of genes in behaviors. GeneWeaver.org is a web-based software system that employs many of these techniques and has been used in the study of complex behavior and addiction. These techniques will be increasingly necessary to understand global patterns emerging from experiments in behavioral genomics.

[1]  J. Bettinger,et al.  Chloride intracellular channels modulate acute ethanol behaviors in Drosophila, Caenorhabditis elegans and mice , 2012, Genes, brain, and behavior.

[2]  Ibrahim Emam,et al.  ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments , 2010, Nucleic Acids Res..

[3]  E. Chesler,et al.  Quantitative trait loci for sensitivity to ethanol intoxication in a C57BL/6J × 129S1/SvImJ inbred mouse cross , 2012, Mammalian Genome.

[4]  Mary Shimoyama,et al.  The Rat Genome Database, update 2007—Easing the path from disease to data and back again , 2006, Nucleic Acids Res..

[5]  A. Butte,et al.  Creation and implications of a phenome-genome network , 2006, Nature Biotechnology.

[6]  N R Smalheiser,et al.  Using ARROWSMITH: a computer-assisted approach to formulating and assessing scientific hypotheses. , 1998, Computer methods and programs in biomedicine.

[7]  Allan R. Jones,et al.  An anatomic gene expression atlas of the adult mouse brain , 2009, Nature Neuroscience.

[8]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics , 2010, Nucleic Acids Res..

[9]  Carol A. Bocchini,et al.  A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®) , 2011, Human mutation.

[10]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[11]  Elissa J. Chesler,et al.  Accelerating Discovery for Complex Neurological and Behavioral Disorders Through Systems Genetics and Integrative Genomics in the Laboratory Mouse , 2012, Neurotherapeutics.

[12]  Chen Zhang,et al.  SynDB: a Synapse protein DataBase based on synapse ontology , 2006, Nucleic Acids Res..

[13]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[14]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[15]  Anne E. Trefethen,et al.  Toward interoperable bioscience data , 2012, Nature Genetics.

[16]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[17]  Cynthia L. Smith,et al.  The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information , 2004, Genome Biology.

[18]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[19]  Tony Veale,et al.  An Intrinsic Information Content Metric for Semantic Similarity in WordNet , 2004, ECAI.

[20]  An-Yuan Guo,et al.  ERGR: An ethanol-related gene resource , 2008, Nucleic Acids Res..

[21]  Michael J. Lush,et al.  genenames.org: the HGNC resources in 2011 , 2010, Nucleic Acids Res..

[22]  Michael A. Langston,et al.  GeneWeaver: a web-based system for integrative functional genomics , 2011, Nucleic Acids Res..

[23]  Jeremy J. Jay,et al.  Ontological Discovery Environment: a system for integrating gene-phenotype associations. , 2009, Genomics.

[24]  J. Mogil,et al.  The Pain Genes Database: An interactive web browser of pain-related transgenic knockout studies , 2007, Pain.

[25]  Chris Mungall,et al.  A Chado case study: an ontology-based modular schema for representing genome-associated biological information , 2007, ISMB/ECCB.

[26]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2011 , 2010, Nucleic Acids Res..

[27]  Hans-Michael Müller,et al.  The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience , 2008, Neuroinformatics.

[28]  Philip S. Yu,et al.  A new method to measure the semantic similarity of GO terms , 2007, Bioinform..

[29]  E. Chesler,et al.  The importance of open-source integrative genomics to drug discovery. , 2010, Current opinion in drug discovery & development.

[30]  Kai Li,et al.  Exploring the functional landscape of gene expression: directed search of large microarray compendia , 2007, Bioinform..

[31]  Catia Pesquita,et al.  Metrics for GO based protein semantic similarity: a systematic evaluation , 2008, BMC Bioinformatics.

[32]  Judith A. Blake,et al.  Autism candidate genes via mouse phenomics , 2011, J. Biomed. Informatics.

[33]  S. Mundlos,et al.  The Human Phenotype Ontology , 2010, Clinical genetics.

[34]  T. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2006, Nucleic Acids Res..

[35]  Lincoln Stein,et al.  Reactome: a database of reactions, pathways and biological processes , 2010, Nucleic Acids Res..

[36]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[37]  F B ROGERS,et al.  Medical Subject Headings , 1948, Nature.

[38]  Monte Westerfield,et al.  ZFIN: enhancements and updates to the zebrafish model organism database , 2010, Nucleic Acids Res..

[39]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[40]  Carole A. Goble,et al.  Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation , 2003, Bioinform..