Evolution of behavioral attractors with learning: nonequilibrium phase transitions.

Learning a bimanual coordination task (synchronization to a visually specified phasing relation) was studied as a dynamical process over 5 days of practicing a required phasing pattern. Systematic probes of the attractor layout of the 5 Ss' coordination dynamics (expressed through a collective variable, relative phase) were conducted before, during, and after practice. Depending on the relationship between the initial coordination dynamics (so-called intrinsic dynamics) and the pattern to be learned (termed behavioral information, which acts as an attractor of the coordination dynamics toward the required phasing), qualitative changes in the phase diagram occurred with learning, accompanied by quantitative evidence for loss of stability (phase transitions). Such effects persisted beyond 1 week. The nature of change due to learning (e.g., abrupt vs. gradual) is shown to arise from the cooperative or competitive interplay between behavioral information and the intrinsic dynamics.