Underwater Vehicles Based on Biological Intelligence

[1]  P Varona,et al.  Synchronous behavior of two coupled electronic neurons. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  W. Davis,et al.  Neuronal control of locomotion in the lobster,Homarus americanus , 2004, Journal of comparative physiology.

[3]  A. Chrachri,et al.  Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish, Procambarus clarkii. , 1989, Journal of neurophysiology.

[4]  Jan Robert Factor,et al.  Biology of the lobster Homarus americanus , 1996 .

[5]  Nikolai F Rulkov,et al.  Modeling of spiking-bursting neural behavior using two-dimensional map. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  W. Davis,et al.  Organization of Invertebrate Motor Systems , 2011 .

[7]  Joseph Ayers,et al.  Acoustic, Communication, Navigation And Sensing Systems For A Biologically-based Controller For A Shallow Water Walking Machine , 1992, OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology.

[8]  S. Grillner,et al.  Cellular bases of a vertebrate locomotor system–steering, intersegmental and segmental co-ordination and sensory control , 2002, Brain Research Reviews.

[9]  Anthony Westphal,et al.  Controlling a lamprey-based robot with an electronic nervous system , 2011 .

[10]  Joel L. Davis,et al.  Neurotechnology for Biomimetic Robots , 2002 .

[11]  Ying Li,et al.  Design of a Low-Cost Underwater Acoustic Modem , 2010, IEEE Embedded Systems Letters.

[12]  Paul S. G. Stein Neurons, networks, and motor behavior , 1999 .

[13]  R. Dubuc,et al.  A Cellular Mechanism for the Transformation of a Sensory Input into a Motor Command , 2000, The Journal of Neuroscience.

[14]  W. Davis,et al.  Neuronal control of locomotion in the lobsterHomarus americanus , 2004, Journal of comparative physiology.

[15]  P. Stein Motor systems, with specific reference to the control of locomotion. , 1978, Annual review of neuroscience.

[16]  Joseph Ayers,et al.  Development of a biomimetic underwater ambulatory robot: advantages of matching biomimetic control architecture with biomimetic actuators , 2000, SPIE Optics East.

[17]  Joseph Ayers,et al.  Lobster walking as a model for an omnidirectional robotic ambulation architecture , 1993 .

[18]  S. Grillner,et al.  Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function. , 1989, Journal of neurophysiology.

[19]  A. Selverston,et al.  Monosynaptic entrainment of an endogenous pacemaker network: A cellular mechanism for von Holst's magnet effect , 1979, Journal of comparative physiology.

[20]  M. W. Hardisty Biology of the Cyclostomes , 1979 .

[21]  F. Delcomyn Neural basis of rhythmic behavior in animals. , 1980, Science.

[22]  W. Davis,et al.  Command interneurons controlling swimmeret movements in the lobster. II. Interaction of effects on motoneurons. , 1972, Journal of neurophysiology.

[23]  James L. Larimer,et al.  Command Fibres in the Circumoesophageal Connectives of Crayfish , 1974 .

[24]  R. Menzel,et al.  The flight paths of honeybees recruited by the waggle dance , 2005, Nature.

[25]  Joseph Ayers,et al.  Biomimetic approaches to the control of underwater walking machines , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Yong-Bin Kim,et al.  Controlling underwater robots with electronic nervous systems , 2010 .

[27]  Joseph Ayers,et al.  Designing and implementing nervous system simulations on LEGO robots. , 2013, Journal of visualized experiments : JoVE.

[28]  C. Rovainen Neurobiology of lampreys. , 1979, Physiological reviews.

[29]  Joseph Ayers,et al.  A Conserved Biomimetic Control Architecture for Walking, Swimming and Flying Robots , 2012, Living Machines.

[30]  Joseph Ayers,et al.  A Biomimetic Neuronal Network-Based Controller for Guided Helicopter Flight , 2013, Living Machines.

[31]  Robert P. Erickson,et al.  Common Properties of Sensory Systems , 1978 .

[32]  Yong-Bin Kim,et al.  Low power, high PVT variation tolerant central pattern generator design for a bio-hybrid micro robot , 2012, 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS).