Supersolid-Based Gravimeter in a Ring Cavity.

We propose a novel type of composite light-matter interferometer based on a supersolidlike phase of a driven Bose-Einstein condensate coupled to a pair of degenerate counterpropagating electromagnetic modes of an optical ring cavity. The supersolidlike condensate under the influence of the gravity drags the cavity optical potential with itself, thereby changing the relative phase of the two cavity electromagnetic fields. Monitoring the phase evolution of the cavity output fields thus allows for a nondestructive measurement of the gravitational acceleration. We show that the sensitivity of the proposed gravimeter exhibits Heisenberg-like scaling with respect to the atom number. As the relative phase of the cavity fields is insensitive to photon losses, the gravimeter is robust against these deleterious effects. For state-of-the-art experimental parameters, the relative sensitivity Δg/g of such a gravimeter could be of the order of 10^{-10}-10^{-8} for a condensate of a half a million atoms and interrogation time of the order of a few seconds.

[1]  Gilberto Saccorotti,et al.  Precision gravimetry with atomic sensors , 2009 .

[2]  C von Cube,et al.  Observation of lasing mediated by collective atomic recoil. , 2003, Physical review letters.

[3]  P. Courteille,et al.  Collective strong coupling of cold potassium atoms in a ring cavity , 2016, 1608.06725.

[4]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[5]  M. Boninsegni,et al.  Colloquium: Supersolids: What and where are they? , 2012, 1201.2227.

[6]  V. Vuletić,et al.  Orientation-dependent entanglement lifetime in a squeezed atomic clock. , 2010, Physical review letters.

[7]  Lee Kumanchik,et al.  High sensitivity optomechanical reference accelerometer over 10 kHz , 2013, 1303.1188.

[8]  A. Landragin,et al.  Comparison between two mobile absolute gravimeters: optical versus atomic interferometers , 2010, 1005.0357.

[9]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[10]  M. Kim,et al.  Quantum limits to gravity estimation with optomechanics , 2017, 1707.00025.

[11]  D. Hume,et al.  Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. , 2014, Physical review letters.

[12]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[13]  C. Zimmermann,et al.  Observation of Subradiant Atomic Momentum States with Bose-Einstein Condensates in a Recoil Resolving Optical Ring Resonator. , 2018, Physical review letters.

[14]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[15]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[16]  F. Piazza,et al.  Driven-Dissipative Supersolid in a Ring Cavity. , 2018, Physical review letters.

[17]  F. Piazza,et al.  Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity , 2013, 1305.2928.

[18]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[19]  In-Mook Choi,et al.  The 8th International Comparison of Absolute Gravimeters 2009: the first Key Comparison (CCM.G-K1) in the field of absolute gravimetry , 2012 .

[20]  H M Wiseman,et al.  Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[21]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[23]  P. Domokos,et al.  Entanglement assisted fast reordering of atoms in an optical lattice within a cavity at T = 0 , 2007 .

[24]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[25]  C. Zimmermann,et al.  Cavity-enhanced superradiant Rayleigh scattering with ultracold and Bose-Einstein condensed atoms , 2007, quant-ph/0703065.

[26]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[27]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[28]  W. Ertmer,et al.  Twin Matter Waves for Interferometry Beyond the Classical Limit , 2011, Science.

[29]  P. Windpassinger,et al.  Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit , 2008, Proceedings of the National Academy of Sciences.

[30]  Konrad Banaszek,et al.  Mode engineering for realistic quantum-enhanced interferometry , 2015, Nature Communications.

[31]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[32]  C. Zimmermann,et al.  Dynamical instability of a Bose-Einstein condensate in an optical ring resonator. , 2014, Physical review letters.

[33]  David E. Pritchard,et al.  Optics and interferometry with atoms and molecules , 2009 .

[34]  W. Schleich,et al.  Redshift controversy in atom interferometry: representation dependence of the origin of phase shift. , 2013, Physical review letters.

[35]  H. Ritsch,et al.  Protected state enhanced quantum metrology with interacting two-level ensembles. , 2013, Physical review letters.

[36]  Cold atoms in a high-Q ring-cavity , 2003, quant-ph/0302098.

[37]  Steven Chu,et al.  Atom-interferometry tests of the isotropy of post-Newtonian gravity. , 2007, Physical review letters.

[38]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[39]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[40]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[41]  Philipp Treutlein,et al.  Quantum metrology with a scanning probe atom interferometer. , 2013, Physical review letters.

[42]  W. Schleich,et al.  Atom-Chip Fountain Gravimeter. , 2016, Physical review letters.

[43]  L. J. Wang,et al.  Development of new free-fall absolute gravimeters , 2009 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Zhongkun Hu,et al.  Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter , 2013 .

[46]  H. Ritsch,et al.  Self-ordering dynamics of ultracold atoms in multicolored cavity fields , 2014, 1404.5348.

[47]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[48]  C. Zimmermann,et al.  Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity. , 2007, Physical review letters.

[49]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[50]  J. Dunningham,et al.  Optimal matter-wave gravimetry , 2017, Physical Review A.

[51]  S. Bose,et al.  Gravimetry through non-linear optomechanics , 2017, Nature Communications.

[52]  I. Shparlinski,et al.  Pseudoprime reductions of elliptic curves , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[53]  N. Treps,et al.  Quantum parameter estimation using general single-mode Gaussian states , 2013, 1307.4637.

[54]  C. Lämmerzahl,et al.  Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms. , 2009, Physical review letters.

[55]  W. Prothero,et al.  The superconducting gravimeter , 1968 .

[56]  S. Chu,et al.  Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer , 1992 .

[57]  Microscopic physics of quantum self-organization of optical lattices in cavities , 2007, quant-ph/0703221.

[58]  G. P. Arnautov,et al.  "Gabl", an Absolute Free-Fall Laser Gravimeter , 1983 .

[59]  Wolfgang Ketterle,et al.  A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates , 2016, Nature.

[60]  F. Fatemi,et al.  Increased atom-cavity coupling and stability using a parabolic ring cavity , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[61]  C. Zimmermann,et al.  Control of matter-wave superradiance with a high-finesse ring cavity , 2013 .

[62]  T. Donner,et al.  Supersolid formation in a quantum gas breaking a continuous translational symmetry , 2016, Nature.

[63]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[64]  Optical lattice in a high-finesse ring resonator , 2002, quant-ph/0212024.

[65]  A. Bertoldi,et al.  Bose–Einstein condensate array in a malleable optical trap formed in a traveling wave cavity , 2018, Quantum Science and Technology.

[66]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[67]  C. Bordé Atomic interferometry with internal state labelling , 1989 .

[68]  M. A. Sooriyabandara,et al.  Simultaneous Precision Gravimetry and Magnetic Gradiometry with a Bose-Einstein Condensate: A High Precision, Quantum Sensor. , 2016, Physical review letters.

[69]  Helmut Ritsch,et al.  QuantumOptics.jl: A Julia framework for simulating open quantum systems , 2018, Comput. Phys. Commun..

[70]  J. Tasson,et al.  Superconducting-Gravimeter Tests of Local Lorentz Invariance. , 2016, Physical review letters.

[71]  C. Zimmermann,et al.  Pinning Transition of Bose-Einstein Condensates in Optical Ring Resonators. , 2018, Physical review letters.

[72]  G. D. Hammond,et al.  Measurement of the Earth tides with a MEMS gravimeter , 2016, Nature.

[73]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.