A Class of Composite Codes with Minimum Distance 8

We consider linear composite codes based on the |a+x|b+x|a+b+x| construction. For m ≥ 3 and r ≤ 4m + 3, we propose a class of linear composite [3 · 2m, 3 · 2m − r, 8] codes, which includes the [24,12,8] extended Golay code. We describe an algebraic decoding algorithm, which is valid for any odd m, and a simplified version of this algorithm, which can be applied for decoding the Golay code. We give an estimate for the combinational-circuit decoding complexity of the Golay code. We show that, along with correction of triple independent errors, composite codes with minimum distance 8 can also correct single cyclic error bursts and two-dimensional error bytes.

[1]  Bahram Honary,et al.  High-speed decoding of extended Golay code , 2000 .

[2]  I. Boyarinov,et al.  A simple decoding algorithm for the [24,12,8] extended Golay code , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[3]  J. Macwilliams Permutation decoding of systematic codes , 1964 .

[4]  N. J. A. Sloane,et al.  New binary codes , 1972, IEEE Trans. Inf. Theory.

[5]  Daniel M. Gordon Minimal permutation sets for decoding the binary Golay codes , 1982, IEEE Trans. Inf. Theory.

[6]  Alexander Vardy Even more efficient bounded-distance decoding of the hexacode, the Golay code, and the Leech lattice , 1995, IEEE Trans. Inf. Theory.

[7]  P. Farrell,et al.  Generalised array codes and their trellis structure , 1993 .

[8]  Jean-Marie Goethals,et al.  On the Golay Perfect Binary Code , 1971, J. Comb. Theory, Ser. A.

[9]  Jacques Wolfmann A permutation decoding of the (24, 12, 8) Golay code , 1983, IEEE Trans. Inf. Theory.

[10]  Jehoshua Bruck,et al.  Decoding the Golay code with Venn diagrams , 1990, IEEE Trans. Inf. Theory.

[11]  Shu Lin,et al.  Some decomposable codes: the |a+x|b+x|a+b+x| construction , 1997, IEEE Trans. Inf. Theory.

[12]  Trieu-Kien Truong,et al.  Decoding the (24,12,8) Golay code , 1990 .

[13]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[14]  Tadao Kasami A decoding procedure for multiple-error-correcting cyclic codes , 1964, IEEE Trans. Inf. Theory.

[15]  Vera Pless,et al.  Decoding the Golay codes , 1986, IEEE Trans. Inf. Theory.

[16]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[17]  Michele Elia,et al.  Algebraic decoding of the (23, 12, 7) Golay code , 1987, IEEE Trans. Inf. Theory.