Generalized Normalizing Flows via Markov Chains

Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This chapter provides a unified framework to handle these approaches via Markov chains. We consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties and show how many state-of-theart models for data generation fit into this framework. Indeed including stochastic layers improves the expressivity of the network and allows for generatingmultimodal distributions from unimodal ones. The Markov chains point of view enables us to couple both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. Our framework establishes a useful mathematical tool to combine the various approaches.

[1]  Ullrich Köthe,et al.  Analyzing Inverse Problems with Invertible Neural Networks , 2018, ICLR.

[2]  Nicola De Cao,et al.  Block Neural Autoregressive Flow , 2019, UAI.

[3]  G. Parisi Brownian motion , 2005, Nature.

[4]  Pauline Tan,et al.  Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior , 2021, ArXiv.

[5]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[6]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[7]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[8]  Yang Song,et al.  Generative Modeling by Estimating Gradients of the Data Distribution , 2019, NeurIPS.

[9]  Anthony L. Caterini,et al.  Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows , 2019, ICML.

[10]  Yang Song,et al.  On Maximum Likelihood Training of Score-Based Generative Models , 2021, ArXiv.

[11]  B. Anderson Reverse-time diffusion equation models , 1982 .

[12]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[14]  Gabriele Steidl,et al.  Convolutional Proximal Neural Networks and Plug-and-Play Algorithms , 2020, Linear Algebra and its Applications.

[15]  Peter Maass,et al.  Conditional Invertible Neural Networks for Medical Imaging , 2021, J. Imaging.

[16]  Antoine Houdard,et al.  Wasserstein Patch Prior for Image Superresolution , 2021, ArXiv.

[17]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[18]  Hermann Gross,et al.  BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM OF SCATTEROMETRY: COMPARISON OF THREE SURROGATE MODELS , 2015 .

[19]  Hermann Gross,et al.  Bayesian approach to determine critical dimensions from scatterometric measurements , 2018, Metrologia.

[20]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[21]  U. Haussmann,et al.  TIME REVERSAL OF DIFFUSIONS , 1986 .

[22]  Eldad Haber,et al.  An introduction to deep generative modeling , 2021, GAMM-Mitteilungen.

[23]  Surya Ganguli,et al.  Deep Unsupervised Learning using Nonequilibrium Thermodynamics , 2015, ICML.

[24]  Ole Winther,et al.  SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows , 2020, NeurIPS.

[25]  Gabriele Steidl,et al.  Parseval Proximal Neural Networks , 2019, Journal of Fourier Analysis and Applications.

[26]  Max Welling,et al.  Learning Likelihoods with Conditional Normalizing Flows , 2019, ArXiv.

[27]  Yongxin Chen,et al.  Diffusion Normalizing Flow , 2021, NeurIPS.

[28]  David D L Minh,et al.  Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation , 2011, Proceedings of the National Academy of Sciences.

[29]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[30]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[31]  On the convergence of the Metropolis-Hastings Markov chains , 2013, 1302.0654.

[32]  Paul Vicol,et al.  Understanding and mitigating exploding inverses in invertible neural networks , 2020, AISTATS.

[33]  J. L. Gall,et al.  Brownian Motion, Martingales, and Stochastic Calculus , 2016 .

[34]  Julien Rabin,et al.  Wasserstein Generative Models for Patch-based Texture Synthesis , 2020, SSVM.

[35]  Daniel Sheldon,et al.  Normalizing Flows Across Dimensions , 2020, ArXiv.

[36]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[37]  Jan Kautz,et al.  Score-based Generative Modeling in Latent Space , 2021, NeurIPS.

[38]  Nicola De Cao,et al.  Explorations in Homeomorphic Variational Auto-Encoding , 2018, ArXiv.

[39]  Gabriele Steidl,et al.  Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence , 2021, SSVM.

[40]  Konik Kothari,et al.  Trumpets: Injective Flows for Inference and Inverse Problems , 2021, UAI.

[41]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[42]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[43]  Joachim Weickert,et al.  Dithering by Differences of Convex Functions , 2011, SIAM J. Imaging Sci..

[44]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[45]  David Duvenaud,et al.  Invertible Residual Networks , 2018, ICML.

[46]  Max Welling,et al.  Multiplicative Normalizing Flows for Variational Bayesian Neural Networks , 2017, ICML.

[47]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[48]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[49]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[50]  Gabriele Steidl,et al.  Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint , 2021, ArXiv.

[51]  Ullrich Köthe,et al.  Guided Image Generation with Conditional Invertible Neural Networks , 2019, ArXiv.

[52]  S. Neumayer,et al.  Stabilizing invertible neural networks using mixture models , 2020, Inverse Problems.

[53]  David Duvenaud,et al.  Residual Flows for Invertible Generative Modeling , 2019, NeurIPS.

[54]  Thomas Müller,et al.  Neural Importance Sampling , 2018, ACM Trans. Graph..

[55]  Iain Murray,et al.  Neural Spline Flows , 2019, NeurIPS.

[56]  Jean-Christophe Pesquet,et al.  Learning Maximally Monotone Operators for Image Recovery , 2020, SIAM J. Imaging Sci..

[57]  Abhishek Kumar,et al.  Score-Based Generative Modeling through Stochastic Differential Equations , 2020, ICLR.

[58]  Jasper Snoek,et al.  On the relationship between Normalising Flows and Variational- and Denoising Autoencoders , 2019, DGS@ICLR.

[59]  Hao Wu,et al.  Stochastic Normalizing Flows , 2020, NeurIPS.

[60]  Arnaud Doucet,et al.  Annealed Flow Transport Monte Carlo , 2021, ICML.

[61]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[62]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[63]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[64]  Yaoliang Yu,et al.  Tails of Lipschitz Triangular Flows , 2020, ICML.

[65]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[66]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[67]  Patrick L. Combettes,et al.  Deep Neural Network Structures Solving Variational Inequalities , 2018, Set-Valued and Variational Analysis.