Applications of Exponential Sums in Communications Theory

We provide an introductory overview of how exponential sums, and bounds for them, have been exploited by coding theorists and communications engineers.

[1]  D. Campana,et al.  Spread-spectrum communications , 1993, IEEE Potentials.

[2]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[3]  Tor Helleseth,et al.  Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation of some q-ary sequences , 1996, IEEE Trans. Inf. Theory.

[4]  John M. Cioffi,et al.  DMT-based ADSL: concept, architecture, and performance , 1994 .

[5]  M.B. Pursley,et al.  Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.

[6]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[7]  Rudolf Lide,et al.  Finite fields , 1983 .

[8]  Aimo Tietäväinen An asymptotic bound on the covering radii of binary BCH codes , 1990, IEEE Trans. Inf. Theory.

[9]  P. Deligne La conjecture de Weil. I , 1974 .

[10]  K. Paterson,et al.  Generalised Reed-Muller codes and power control in OFDM modulation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[11]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.

[12]  Jyrki Lahtonen,et al.  On the odd and the aperiodic correlation properties of the Kasami sequences , 1995, IEEE Trans. Inf. Theory.

[13]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[14]  Guang Gong,et al.  Theory and applications of q-ary interleaved sequences , 1995, IEEE Trans. Inf. Theory.

[15]  Jong-Seon No,et al.  A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span , 1988, IEEE International Conference on Communications, - Spanning the Universe..

[16]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[17]  Robert A. Scholtz Criteria for Sequence Set Design in CDMA Communications , 1993, AAECC.

[18]  T. Helleseth,et al.  An upper bound for some exponential sums over Galois rings and applications , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[19]  Laurence B. Milstein,et al.  Spread-Spectrum Communications , 1983 .

[20]  Wolfgang M. Schmidt,et al.  Bounds for exponential sums , 1984 .

[21]  Kenneth G. Paterson,et al.  Bounds on Partial Correlations of Sequences , 1998, IEEE Trans. Inf. Theory.

[22]  Oscar Moreno,et al.  Prime-phase sequences with periodic correlation properties better than binary sequences , 1991, IEEE Trans. Inf. Theory.

[23]  R. Scholtz,et al.  GMW sequences (Corresp.) , 1984 .

[24]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .

[25]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[26]  James A. Davis,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[27]  Dilip V. Sarwate An upper bound on the aperiodic autocorrelation function for a maximal-length sequence , 1984, IEEE Trans. Inf. Theory.

[28]  P. Vijay Kumar,et al.  Binary sequences with Gold-like correlation but larger linear span , 1994, IEEE Trans. Inf. Theory.

[29]  Oscar Moreno,et al.  An Extension of the Weil-Carlitz-Uchiyama Bound , 1995 .

[30]  J.A.C. Bingham,et al.  Multicarrier modulation for data transmission: an idea whose time has come , 1990, IEEE Communications Magazine.

[31]  Mohammad Umar Siddiqi,et al.  Optimal biphase sequences with large linear complexity derived from sequences over Z4 , 1996, IEEE Trans. Inf. Theory.

[32]  Oscar Moreno,et al.  The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes , 1994, IEEE Trans. Inf. Theory.

[33]  R. Gold,et al.  Optimal binary sequences for spread spectrum multiplexing (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[34]  Carlos J. Moreno,et al.  Algebraic curves over finite fields: Frontmatter , 1991 .

[35]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[36]  H. Hollmann,et al.  A Proof of the Welch and Niho Conjectures on Cross-Correlations of Binary m-Sequences , 2001 .

[37]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[38]  Robert A. Scholtz,et al.  Bent-function sequences , 1982, IEEE Trans. Inf. Theory.

[39]  N. Hurt Exponential Sums and Coding Theory: A Review , 1997 .

[40]  P. Vijay Kumar,et al.  A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span , 1989, IEEE Trans. Inf. Theory.

[41]  Bernard Dwork,et al.  On the Rationality of the Zeta Function of an Algebraic Variety , 1960 .

[42]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[43]  Robert Gold,et al.  Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[44]  A. Robert Calderbank,et al.  An upper bound for Weft exponential sums over Galois tings and applications , 1994, IEEE Trans. Inf. Theory.

[45]  Kenneth G. Paterson,et al.  On the existence and construction of good codes with low peak-to-average power ratios , 2000, IEEE Trans. Inf. Theory.

[46]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[47]  Dilip V. Sarwate,et al.  Bounds on crosscorrelation and autocorrelation of sequences (Corresp.) , 1979, IEEE Transactions on Information Theory.

[48]  Pingzhi Fan,et al.  SEQUENCE DESIGN FOR COMMUNICATIONS APPLICATIONS , 1996 .

[49]  D. Jungnickel Finite fields : structure and arithmetics , 1993 .

[50]  Oscar Moreno,et al.  Minimum distance bounds for cyclic codes and Deligne's theorem , 1993, IEEE Trans. Inf. Theory.

[51]  Robert A. Scholtz,et al.  GMW sequences , 1984, IEEE Trans. Inf. Theory.

[52]  Tor Helleseth,et al.  On the covering radius of cyclic linear codes and arithmetic codes , 1985, Discret. Appl. Math..

[53]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[54]  A. Tietavainen,et al.  An asymptotic bound on the covering radii of binary BCH codes , 1990 .

[55]  M. Alard,et al.  Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers , 1987 .

[56]  A. Robert Calderbank,et al.  Large families of quaternary sequences with low correlation , 1996, IEEE Trans. Inf. Theory.

[57]  Jong-Seon No,et al.  Generalization of GMW sequences and No sequences , 1996, IEEE Trans. Inf. Theory.

[58]  Leslie R. Welch Lower bounds on the maximum correlation of signals , 1974 .

[59]  W. Schmidt Equations over Finite Fields: An Elementary Approach , 1976 .

[60]  Leonard J. Cimini,et al.  Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing , 1985, IEEE Trans. Commun..

[61]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[62]  Dilip V. Sarwate,et al.  Partial Correlation Effects in Direct-Sequence Spread-Spectrum Multiple-Access Communication Systems , 1984, IEEE Trans. Commun..

[63]  Hideki Imai,et al.  Pseudo-Noise Sequences for Tracking and Data Relay Satellite and Related Systems , 1991 .

[64]  Kenneth G. Paterson,et al.  Binary Sequence Sets with Favorable Correlations from Difference Sets and MDS Codes , 1998, IEEE Trans. Inf. Theory.

[65]  Andrew Klapper,et al.  D-form Sequences: Families of Sequences with Low Correlation Values and Large Linear Spans , 1995, IEEE Trans. Inf. Theory.

[66]  Surendra Prasad,et al.  New class of sequence sets with good auto- and crosscorrelation functions , 1986 .

[67]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case , 1999, Inf. Comput..