Computing Biomolecular System Steady-States

A new approach to compute the equilibria and the steady-states of biomolecular systems modeled by bond graphs is presented. The approach is illustrated using a model of a biomolecular cycle representing a membrane transporter and a model of the mitochondrial electron transport chain.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  Peter J. Gawthrop,et al.  Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction , 2016, IEEE Transactions on NanoBioscience.

[4]  Edmund J Crampin,et al.  Energy-based analysis of biomolecular pathways , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Edmund J. Crampin,et al.  Bond graph modelling of chemoelectrical energy transduction , 2015, 1512.00956.

[6]  P. Gawthrop Bond-Graph Modelling and Causal Analysis of Biomolecular Systems , 2017 .

[7]  T. Shlomi,et al.  Metabolite concentrations, fluxes, and free energies imply efficient enzyme usage , 2016, Nature chemical biology.

[8]  Jason N Bazil,et al.  Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation. , 2016, Biophysical journal.

[9]  Edmund J Crampin,et al.  Modular bond-graph modelling and analysis of biomolecular systems. , 2015, IET systems biology.

[10]  Edmund J Crampin,et al.  Energy-based analysis of biochemical cycles using bond graphs , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Navonil Mustafee,et al.  A journal profiling and co-citation study of SIMULATION: the transactions of the society for modeling and simulation international , 2014, SpringSim.

[12]  M. Esposito,et al.  Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. , 2014, The Journal of chemical physics.

[13]  Gawthrop A tutorial introduction for control engineers , 2014 .

[14]  D. Beard Biosimulation: Simulation of Living Systems , 2012 .

[15]  R. Galindo,et al.  Steady state determination using bond graphs for systems with singular state matrix , 2011 .

[16]  D. Beard Simulation of cellular biochemical system kinetics , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[17]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[18]  Wolfgang Borutzky,et al.  Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models , 2009 .

[19]  Feng Qi,et al.  Generating rate equations for complex enzyme systems by a computer-assisted systematic method , 2009, BMC Bioinformatics.

[20]  Hong Qian,et al.  Chemical Biophysics: Quantitative Analysis of Cellular Systems , 2008 .

[21]  P. Gawthrop,et al.  Bond-graph modeling , 2007, IEEE Control Systems.

[22]  Serge Scavarda,et al.  Equilibrium set investigation using bicausality , 2006 .

[23]  Peter Atkins,et al.  Physical Chemistry for the Life Sciences , 2005 .

[24]  Twente A Bond Graph Algorithm to Determine the Equilibrium State of a System , 2001 .

[25]  Dean Karnopp,et al.  System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems , 1999 .

[26]  T. L. Hill,et al.  Free Energy Transduction and Biochemical Cycle Kinetics , 1988, Springer New York.

[27]  R. M. Harris,et al.  Physical chemistry for the life sciences , 1980, Nature.

[28]  Ke Sahin,et al.  System dynamics modeling , 1980 .

[29]  P. Mitchell Keilin's respiratory chain concept and its chemiosmotic consequences. , 1979, Science.

[30]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[31]  G. Oster,et al.  Network Thermodynamics , 1971, Nature.

[32]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[33]  E. L. King,et al.  A Schematic Method of Deriving the Rate Laws for Enzyme-Catalyzed Reactions , 1956 .