Conjugacy in Garside groups II: structure of the ultra summit set
暂无分享,去创建一个
[1] Ruth Charney,et al. Artin groups of finite type are biautomatic , 1992 .
[2] Bert Wiest,et al. On the structure of the centralizer of a braid , 2003, math/0305156.
[3] F. Digne,et al. Endomorphisms of Deligne-Lusztig Varieties , 2005, Nagoya Mathematical Journal.
[4] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[5] D. Gilbert Dolan,et al. Broadway , 1906 .
[6] Finite complex reflection arrangements are $K(\pi,1)$ , 2006, math/0610777.
[7] B. Kerékjártó,et al. Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche , 1919 .
[8] J. Michel. A Note on Words in Braid Monoids , 1999 .
[9] F. A. Garside,et al. THE BRAID GROUP AND OTHER GROUPS , 1969 .
[10] Joan S. Birman,et al. A new approach to the word and conjugacy problems in the braid groups , 1997 .
[11] Volker Gebhardt,et al. Conjugacy in Garside groups III: Periodic braids , 2006 .
[12] Bestvina's Normal Form Complex and the Homology of Garside Groups , 2002, math/0202228.
[13] Ki Hyoung Ko,et al. The Infimum, Supremum, and Geodesic Length of a Braid Conjugacy Class , 2000 .
[14] Volker Gebhardt. A New Approach to the Conjugacy Problem in Garside Groups , 2003 .
[15] Juan Gonzalez-Meneses,et al. Conjugacy problem for braid groups and Garside groups1 , 2001 .
[16] Juan Gonzalez-Meneses. The nth root of a braid is unique up to conjugacy , 2003 .
[17] Egbert Brieskorn,et al. Artin-Gruppen und Coxeter-Gruppen , 1972 .
[18] Samuel Eilenberg,et al. Sur les transformations périodiques de la surface de sphère , 1934 .
[19] Volker Gebhardt,et al. Conjugacy in Garside groups I: cyclings, powers and rigidity , 2006, math/0605230.
[20] Hugh R. Morton,et al. ALGORITHMS FOR POSITIVE BRAIDS , 1994 .
[21] Mladen Bestvina. Non-positively curved aspects of Artin groups of finite type , 1999 .
[22] Patrick Dehornoy,et al. Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .
[23] David B. A. Epstein,et al. Word processing in groups , 1992 .
[24] A. Constantin,et al. The theorem of Kerekjarto on periodic homeomorphisms of the disc and the sphere , 2003, math/0303256.