Investigation of internal processes in organic light-emitting devices using thin sensing layers

Abstract Systematic studies are a prerequisite for a detailed understanding of the internal processes in organic semiconductors and devices, which is of great importance for optimizing organic light-emitting diode performance. Devices based on small molecules are especially well-suited for introducing thin layers (

[1]  C. H. Chen,et al.  Improved red dopants for organic electroluminescent devices , 1997 .

[2]  Walter Riess,et al.  Combinatorial device fabrication and optimization of multilayer organic LEDs , 2002, SPIE Optics + Photonics.

[3]  I. Campbell,et al.  Direct measurement of the internal electric field distribution in a multilayer organic light‐emitting diode , 1995 .

[4]  Y. Tao,et al.  Selective doping of multilayer organic light emitting devices , 2000 .

[5]  Paul Seidler,et al.  Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes , 2001 .

[6]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[7]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[8]  Walter Riess,et al.  Influence of trapped and interfacial charges in organic multilayer light-emitting devices , 2001, IBM J. Res. Dev..

[9]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[10]  Yongli Gao,et al.  Photoluminescence quenching of Alq3 by metal deposition: A surface analytical investigation , 1998 .

[11]  T. Tsutsui,et al.  Electroabsorption spectroscopy on tris-(8-hydroxyquinoline) aluminum-based light emitting diodes , 1999 .

[12]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[13]  Walter Riess,et al.  Role of copper-phthalocyanine in multilayer organic LEDs based on small molecules , 2003, SPIE Optics + Photonics.

[14]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[15]  Walter Riess,et al.  Temperature stability of OLEDs using amorphous compounds with spiro-bifluorene core , 1999, Optics & Photonics.

[16]  Ching Wan Tang,et al.  Doped organic electroluminescent devices with improved stability , 1997 .

[17]  Hans-Werner Schmidt,et al.  A Combinatorial Study of the Dependence of Organic LED Characteristics on Layer Thickness , 1999 .

[18]  Mark A. Ratner,et al.  Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes , 2000 .

[19]  Hans-Werner Schmidt,et al.  Combinatorial methods for screening and optimization of materials and device parameters in organic light-emitting diodes , 1999, Optics & Photonics.

[20]  Direct measurement of internal potential distribution in organic electroluminescent diodes during operation , 2000 .

[21]  T. Mizutani,et al.  Application of energy transfer model to partially DCM-doped Alq3 light-emitting diode , 1997 .