The Borexino detector at the Laboratori Nazionali del Gran Sasso

Abstract Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub-MeV solar neutrinos, and particularly of the monoenergetic (862 keV) 7 Be electron capture neutrinos, via neutrino–electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).

[1]  N. Darnton,et al.  Ultra-low background measurements in a large volume underground detector , 1998 .

[2]  R. Dossi,et al.  A sampling board optimized for pulse shape discrimination in liquid scintillator applications , 2004, IEEE Transactions on Nuclear Science.

[3]  M. Wójcik,et al.  Radon permeability through nylon at various humidities used in the BOREXINO experiment , 2004 .

[4]  D. Franco The Borexino experiment: Test of the purification systems and data analysis in the counting test facility , 2005 .

[5]  P. Lombardi,et al.  Precision Measurements of Time Characteristics of ETL9351 Photomultipliers , 2004 .

[6]  G. Ewan The Sudbury neutrino observatory , 2000 .

[7]  S. Vitale,et al.  Liquid scintillators for large mass and low background detectors , 1996 .

[8]  E. Harding,et al.  CNO and pep neutrino spectroscopy in Borexino: Measurement of the deep-underground production of cosmogenic C-11 in an organic liquid scintillator , 2006 .

[9]  N. Darnton,et al.  Light propagation in a large volume liquid scintillator , 2000 .

[10]  O. Smirnov Setting of the Predefined Multiplier Gain of a Photomultiplier , 2002, 1904.07353.

[11]  S. Vitale,et al.  Measurements of liquid scintillator properties for the Borexino detector , 1997 .

[12]  D. Giugni,et al.  Performances of the photomultiplier EMI 9351 for underground physics applications , 1993 .

[13]  M. Chen,et al.  QUENCHING OF UNDESIRED FLUORESCENCE IN A LIQUID SCINTILLATOR PARTICLE DETECTOR , 1999 .

[14]  P. Musico,et al.  The Borexino read out electronics and trigger system , 2001 .

[15]  A. Pocar Low background techniques and experimental challenges for Borexino and its nylon vessels , 2003 .

[16]  G. Ranucci,et al.  Performances of the photomultiplier Hamamatsu R4558 for underground physics applications , 1993 .

[17]  R. Dossi,et al.  Methods for precise photoelectron counting with photomultipliers , 2000 .

[18]  D. Giugni,et al.  Characterization and magnetic shielding of the large cathode area PMTs used for the light detection system of the prototype of the solar neutrino experiment Borexino , 1993 .

[19]  M. Wójcik,et al.  Ultra-traces of 226Ra in nylon used in the BOREXINO solar neutrino experiment , 2003 .

[20]  O. Dadoun,et al.  New limits on nucleon decays into invisible channels with the BOREXINO counting test facility , 2003 .

[21]  A. Ianni,et al.  The photomultiplier tube testing facility for the Borexino experiment at LNGS , 2005 .

[22]  Measurements of extremely low radioactivity levels in BOREXINO , 2001, hep-ex/0109031.

[23]  S. Schönert,et al.  Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso , 2006 .

[24]  L. Cadonati The Borexino solar neutrino experiment and its scintillator containment vessel , 2001 .

[25]  A. Ianni,et al.  The measurements of 2200 ETL9351 type photomultipliers for the Borexino experiment with the photomultiplier testing facility at LNGS , 2005 .

[26]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[27]  E. al.,et al.  Science and technology of BOREXINO: A Real time detector for low-energy solar neutrinos , 2000, hep-ex/0012030.

[28]  K. McCarty The Borexino nylon film and the third counting test facility , 2006 .

[29]  M. Grassi,et al.  Initial Results from the CHOOZ Long Baseline Reactor Neutrino Oscillation Experiment , 1998 .

[30]  The nylon scintillator containment vessels for the Borexino solar neutrino experiment , 2007, physics/0702162.

[31]  N. Darnton,et al.  A large-scale low-background liquid scintillation detector: the counting test facility at Gran Sasso , 1998 .

[32]  D. H. White,et al.  The Liquid Scintillator Neutrino Detector and LAMPF Neutrino Source , 1996, nucl-ex/9605002.

[33]  O. Dadoun,et al.  Search for electron decay mode e→γ+ν with prototype of Borexino detector , 2002 .

[34]  D. Giugni,et al.  A multiplexed optical-fiber system for the PMT calibration of the Borexino experiment , 2003 .

[35]  S. Bonetti,et al.  Performances of the photomultiplier Philips XP 1802 for underground physics applications , 1993 .

[36]  H. Simgen,et al.  Ultrapure gases - From the Production Plant to the Laboratory , 2006 .

[37]  H. Back Internal Radioactive Source Calibration of the Borexino Solar Neutrino Experiment , 2004 .

[38]  G. Testera,et al.  A gateless charge integrator for Borexino energy measurement , 1999 .

[39]  S. Bonetti,et al.  First real time detection of 7Be solar neutrinos by Borexino , 2008 .

[40]  P. Lombardi,et al.  PULSE-SHAPE DISCRIMINATION OF LIQUID SCINTILLATORS , 1998 .