Reciprocity in the Langlands program since Fermat's Last Theorem

The reciprocity conjecture in the Langlands program links motives to automorphic forms. The proof of Fermat’s Last Theorem by Wiles [180, 169] introduced new tools to study reciprocity. This survey reports on developments using these ideas (and their generalizations) in the last three decades.

[1]  Kevin Buzzard,et al.  On icosahedral Artin representations , 2001 .

[2]  A. Wiles,et al.  Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .

[3]  A. Snowden Singularities of ordinary deformation rings , 2011, 1111.3654.

[4]  M. Emerton On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms , 2006 .

[5]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[6]  Chandrashekhar Khare,et al.  Serre's Modularity Conjecture , 2011 .

[7]  The Fontaine-Mazur conjecture in the residually reducible case , 2019, 1901.07166.

[8]  C. Breuil Sur quelques représentations modulaires et p-adiques de GL2(Qp): I , 2003, Compositio Mathematica.

[9]  Ordinary representations and modular forms. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  James S. Milne,et al.  Arithmetic Duality Theorems , 1987 .

[11]  Haruzo Hida,et al.  Galois representations into GL2 (Zp[[X]]) attached to ordinary cusp forms , 1986 .

[12]  Frank Calegari CONGRUENCES BETWEEN MODULAR FORMS , 2013 .

[13]  R. Taylor,et al.  On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.

[14]  M. Kisin Overconvergent modular forms and the Fontaine-Mazur conjecture , 2003 .

[15]  A. Caraiani Monodromy and local-global compatibility for l = p , 2012, 1202.4683.

[16]  An analogue of Serre's conjecture for Galois representations and Hecke eigenclasses in the mod p$ co , 1999, math/9906216.

[17]  Kenneth A. Ribet,et al.  On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .

[18]  Ravi Ramakrishna Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur , 2002 .

[19]  A. Caraiani Local-global compatibility and the action of monodromy on nearby cycles , 2010, 1010.2188.

[20]  C. Khare Remarks on mod p forms of weight one , 1997 .

[21]  N. Dunfield,et al.  Automorphic forms and rational homology 3--spheres , 2005, math/0508271.

[22]  Jean-Pierre Serre Sur les répresentations modulaires de degré 2 de Gal $$ (\bar{Q}/Q) $$ , 2000 .

[23]  N. Châu Le lemme fondamental pour les algebres de Lie , 2008, 0801.0446.

[24]  Michael Harris,et al.  A Family of Calabi–Yau Varieties and Potential Automorphy II , 2011 .

[25]  M. Harris,et al.  On the stabilization of the trace formula. , 2011 .

[26]  Strata Hasse invariants, Hecke algebras and Galois representations , 2015, Inventiones mathematicae.

[27]  Stefan Patrikis,et al.  Lifting and automorphy of reducible mod p Galois representations over global fields , 2020, Inventiones mathematicae.

[28]  C. Khare Serre's modularity conjecture: The level one case , 2006 .

[29]  Takeshi Saito Galois representations and modular forms , 2006 .

[30]  Proof of de Smit’s conjecture: a freeness criterion , 2016, Compositio Mathematica.

[31]  S. Shin Galois representations arising from some compact Shimura varieties , 2011 .

[32]  L. Clozel Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n) , 1991 .

[33]  J. Thorne,et al.  On the rigid cohomology of certain Shimura varieties , 2014, 1411.6717.

[34]  Barry Mazur,et al.  On $p$-adic analytic families of Galois representations , 1986 .

[35]  P. Scholze On torsion in the cohomology of locally symmetric varieties , 2013, 1306.2070.

[36]  David A. Buchsbaum,et al.  Homological dimension in local rings , 1957 .

[37]  Robert P. Langlands,et al.  BASE CHANGE FOR GL(2) , 1980 .

[38]  Richard Taylor,et al.  Compatibility of Local and Global Langlands Correspondences , 2004, math/0412357.

[39]  David Savitt Modularity of some potentially Barsotti–Tate Galois representations , 2002, Compositio Mathematica.

[40]  Henri Carayol,et al.  Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert , 1986 .

[41]  P. Scholze,et al.  On the generic part of the cohomology of compact unitary Shimura varieties , 2015, 1511.02418.

[42]  Mark Kisin,et al.  The Fontaine-Mazur conjecture for {GL}_2 , 2009 .

[43]  M. Kisin Moduli of finite flat group schemes, and modularity , 2009 .

[44]  Galois representations with conjectural connections to arithmetic cohomology , 2001, math/0102233.

[45]  C. Breuil SCHEMAS EN GROUPES ET CORPS DES NORMES , 2003 .

[46]  Jean-Pierre Serre Groupes $p$-divisibles , 1968 .

[47]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[48]  Shu Sasaki Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms , 2018, Inventiones mathematicae.

[49]  A. Wiles On ordinary λ-adic representations associated to modular forms , 1988 .

[50]  Richard Taylor Galois representations , 2002, math/0212403.

[51]  Frank Calegari,et al.  Modularity lifting beyond the Taylor–Wiles method , 2012, 1207.4224.

[52]  J. Arthur,et al.  Simple algebras, base change, and the advanced theory of the trace formula , 1989 .

[53]  C. Khare,et al.  On Serre's conjecture for 2-dimensional mod p representations of Gal( Q=Q) , 2009 .

[54]  Toby Gee,et al.  Automorphic Forms and Galois Representations: The conjectural connections between automorphic representations and Galois representations , 2010, 1009.0785.

[55]  Lue Pan On locally analytic vectors of the completed cohomology of modular curves , 2020, Forum of Mathematics, Pi.

[56]  J. Fontaine Groupes finis commutatifs sur les vecteurs de Witt , 1985 .

[57]  A. Wiles Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .

[58]  Kai-Wen Lan,et al.  Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties , 2013 .

[59]  Richard Taylor,et al.  Automorphy and irreducibility of some l-adic representations , 2013, Compositio Mathematica.

[60]  Sur quelques repr\'esentations potentiellement cristallines de GL_2(Q_p) , 2006, math/0601545.

[61]  P. Allen Deformations of polarized automorphic Galois representations and adjoint Selmer groups , 2014, 1411.7661.

[62]  Michel Verpeaux,et al.  INTRODUCTION GÉNÉRALE , 2020, La structure ontologique-communionnelle de la personne.

[63]  Jerrold Tunnell,et al.  Artin’s conjecture for representations of octahedral type , 1981 .

[64]  J. Thorne,et al.  Level raising and symmetric power functoriality, II , 2015 .

[65]  V. Pilloni Formes modulaires p-adiques de Hilbert de poids 1 , 2017 .

[66]  B. Conrad Ramified deformation problems , 1999 .

[67]  Payman L. Kassaei,et al.  Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case , 2012, Forum of Mathematics, Sigma.

[68]  Michael Harris,et al.  Automorphy for some l-adic lifts of automorphic mod l Galois representations , 2008 .

[69]  Laurent Moret-Bailly Groupes de Picard et problèmes de Skolem. I , 1989 .

[70]  P. Colmez Les conjectures de monodromie $p$-adiques , 2002 .

[71]  Pierre Colmez,et al.  The p-adic local Langlands correspondence for GL_2(Q_p) , 2013, 1310.2235.

[72]  Ravi Ramakrishna Lifting Galois representations , 1999 .

[73]  J. Thorne,et al.  On the automorphy of l-adic Galois representations with small residual image With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Jack Thorne , 2011, Journal of the Institute of Mathematics of Jussieu.

[74]  Jean-Pierre Serre,et al.  Formes modulaires de poids $1$ , 1974 .

[75]  Richard Taylor,et al.  The Geometry and Cohomology of Some Simple Shimura Varieties. , 2002 .

[76]  Jack A. Thorne,et al.  Symmetric power functoriality for holomorphic modular forms , 2019, Publications mathématiques de l'IHÉS.

[77]  Richard Taylor The image of complex conjugation in l-adic representations associated to automorphic forms , 2012 .

[78]  J. Thorne,et al.  Automorphy lifting for residually reducible $l$-adic Galois representations, II , 2014, Compositio Mathematica.

[79]  C. Breuil SÉRIE SPÉCIALE p-ADIQUE ET COHOMOLOGIE ÉTALE COMPLÉTÉE par , 2009 .

[80]  M. Kisin Modularity of 2-dimensional Galois representations , 2005 .

[81]  B. Conrad Finite Group Schemes over Bases with Low Ramification , 1999, Compositio Mathematica.

[82]  M. Emerton A Local-Global Compatibility Conjecture in the p-adic Langlands Programme for GL 2/Q , 2006 .

[83]  M. Kisin Modularity of 2-adic Barsotti-Tate representations , 2009 .

[84]  W. Marsden I and J , 2012 .

[85]  A. Wiles,et al.  Base change and a problem of Serre , 2001 .

[86]  Fred Diamond,et al.  ON DEFORMATION RINGS AND HECKE RINGS , 1996 .

[87]  Frank Calegari,et al.  Minimal modularity lifting for nonregular symplectic representations , 2019, 1907.08691.

[88]  H. Hida p -adic ordinary Hecke algebras for GL ( 2 ) , 2017 .

[89]  Minimal modularity lifting for GL2 over an arbitrary number field , 2012, 1209.5309.

[90]  B. Mazur Deforming Galois Representations , 1989 .

[91]  S. Siksek,et al.  Elliptic curves over real quadratic fields are modular , 2013, 1310.7088.

[92]  Gary Cornell,et al.  Modular Forms and Fermat's Last Theorem , 1997 .

[93]  A. Caraiani,et al.  On the image of complex conjugation in certain Galois representations , 2014, Compositio Mathematica.

[94]  Payman L. Kassaei Modularity lifting in parallel weight one , 2011, 1111.2804.

[95]  Frank Calegari,et al.  Abelian surfaces over totally real fields are potentially modular , 2018, Publications mathématiques de l'IHÉS.

[96]  Frank Calegari Even Galois representations and the Fontaine–Mazur conjecture , 2009, 0907.3427.

[97]  L. Dieulefait Automorphy of Symm^5(GL(2)) and base change , 2012, 1208.3946.

[98]  Takeshi Saito Modular forms and p-adic Hodge theory , 1997 .

[99]  Fred Diamond,et al.  The Taylor-Wiles construction and multiplicity one , 1997 .

[100]  C. Breuil,et al.  Représentations de GL2(Qp) et (φ,Γ)-modules , 2010 .

[101]  J. Thorne,et al.  Potential Automorphy and the Leopoldt conjecture , 2014, 1409.7007.

[102]  Ravi Ramakrishna On a variation of Mazur's deformation functor , 1993 .

[104]  R. Kottwitz On the λ-adic representations associated to some simple Shimura varieties , 1992 .

[105]  Deformation rings and Hecke algebras in the totally real case , 2006, math/0602606.

[106]  On degree 2 Galois representations over F4. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Akshay Venkatesh,et al.  A torsion Jacquet--Langlands correspondence , 2012, 1212.3847.

[108]  R. Coleman Classical and overconvergent modular forms , 1995 .

[109]  Takeshi Tsuji p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case , 1999 .

[110]  Richard Taylor REMARKS ON A CONJECTURE OF FONTAINE AND MAZUR , 2002, Journal of the Institute of Mathematics of Jussieu.

[111]  J. Tate The non-existence of certain Galois extensions of Q unramified outside 2 , 1994 .

[112]  M. Harris Potential Automorphy of Odd-Dimensional Symmetric Powers of Elliptic Curves and Applications , 2009 .

[113]  M. Dickinson On the modularity of certain 2-adic Galois representations , 2001 .

[114]  B. Mazur,et al.  Nearly ordinary Galois deformations over arbitrary number fields , 2007, Journal of the Institute of Mathematics of Jussieu.

[115]  G. Böckle On the density of modular points in universal deformation spaces , 2001 .

[116]  A. Wiles,et al.  Residually reducible representations and modular forms , 1999 .

[117]  M. Kisin Potentially semi-stable deformation rings , 2007 .

[118]  Richard Taylor,et al.  A family of Calabi-Yau varieties and potential automorphy , 2010 .

[119]  D. Geraghty Modularity lifting theorems for ordinary Galois representations , 2018, Mathematische Annalen.

[120]  Akshay Venkatesh,et al.  Derived Galois deformation rings , 2016, 1608.07236.

[121]  Richard Taylor,et al.  Icosahedral Galois Representations , 1978 .

[122]  P. Colmez Représentations triangulines de dimension 2 , 2008 .

[123]  P. Colmez Une correspondance de Langlands locale p-adique pour les repre-sentations semi-stables de dimension , 2004 .

[124]  An Extension of Wiles’ Results , 1997 .

[125]  J. Fontaine,et al.  Construction de représentations $p$-adiques , 1982 .

[126]  Toby Gee,et al.  The Sato-Tate conjecture for Hilbert modular forms , 2009, 0912.1054.

[127]  M. Kisin The Structure of Potentially Semi-Stable Deformation Rings , 2011 .

[128]  G. Boxer Torsion in the Coherent Cohomology of Shimura Varieties and Galois Representations , 2015, 1507.05922.

[129]  Le lemme fondamental pour les groupes unitaires , 2004, math/0404454.

[130]  Companion forms and weight one forms , 1999, math/9905207.

[131]  David Geraghty,et al.  Potential automorphy and change of weight , 2010, 1010.2561.

[132]  G. Harcos,et al.  l-Adic representations associated to modular forms over imaginary quadratic fields , 2007, 0707.1338.

[133]  J. Shalika,et al.  On Euler Products and the Classification of Automorphic Forms II , 1981 .

[134]  Jean-Pierre Serre,et al.  Fermat ’ s Last Theorem , 2017 .

[135]  Fred Diamond,et al.  Modularity of Certain Potentially Barsotti-Tate Galois Representations , 1999 .

[136]  Toby Gee Automorphic lifts of prescribed types , 2008, 0810.1877.

[137]  Vytautas Paškūnas,et al.  The image of Colmez’s Montreal functor , 2010, 1005.2008.

[138]  V. Pilloni Higher coherent cohomology and p -adic modular forms of singular weights , 2020, Duke Mathematical Journal.

[139]  Fred Diamond,et al.  La série principale unitaire de GL2(Qp): vecteurs localement analytiques , 2014 .