Reciprocity in the Langlands program since Fermat's Last Theorem
暂无分享,去创建一个
[1] Kevin Buzzard,et al. On icosahedral Artin representations , 2001 .
[2] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[3] A. Snowden. Singularities of ordinary deformation rings , 2011, 1111.3654.
[4] M. Emerton. On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms , 2006 .
[5] Edgar E. Enochs,et al. On Cohen-Macaulay rings , 1994 .
[6] Chandrashekhar Khare,et al. Serre's Modularity Conjecture , 2011 .
[7] The Fontaine-Mazur conjecture in the residually reducible case , 2019, 1901.07166.
[8] C. Breuil. Sur quelques représentations modulaires et p-adiques de GL2(Qp): I , 2003, Compositio Mathematica.
[9] Ordinary representations and modular forms. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[10] James S. Milne,et al. Arithmetic Duality Theorems , 1987 .
[11] Haruzo Hida,et al. Galois representations into GL2 (Zp[[X]]) attached to ordinary cusp forms , 1986 .
[12] Frank Calegari. CONGRUENCES BETWEEN MODULAR FORMS , 2013 .
[13] R. Taylor,et al. On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.
[14] M. Kisin. Overconvergent modular forms and the Fontaine-Mazur conjecture , 2003 .
[15] A. Caraiani. Monodromy and local-global compatibility for l = p , 2012, 1202.4683.
[16] An analogue of Serre's conjecture for Galois representations and Hecke eigenclasses in the mod p$ co , 1999, math/9906216.
[17] Kenneth A. Ribet,et al. On modular representations of $$(\bar Q/Q)$$ arising from modular forms , 1990 .
[18] Ravi Ramakrishna. Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur , 2002 .
[19] A. Caraiani. Local-global compatibility and the action of monodromy on nearby cycles , 2010, 1010.2188.
[20] C. Khare. Remarks on mod p forms of weight one , 1997 .
[21] N. Dunfield,et al. Automorphic forms and rational homology 3--spheres , 2005, math/0508271.
[22] Jean-Pierre Serre. Sur les répresentations modulaires de degré 2 de Gal $$ (\bar{Q}/Q) $$ , 2000 .
[23] N. Châu. Le lemme fondamental pour les algebres de Lie , 2008, 0801.0446.
[24] Michael Harris,et al. A Family of Calabi–Yau Varieties and Potential Automorphy II , 2011 .
[25] M. Harris,et al. On the stabilization of the trace formula. , 2011 .
[26] Strata Hasse invariants, Hecke algebras and Galois representations , 2015, Inventiones mathematicae.
[27] Stefan Patrikis,et al. Lifting and automorphy of reducible mod p Galois representations over global fields , 2020, Inventiones mathematicae.
[28] C. Khare. Serre's modularity conjecture: The level one case , 2006 .
[29] Takeshi Saito. Galois representations and modular forms , 2006 .
[30] Proof of de Smit’s conjecture: a freeness criterion , 2016, Compositio Mathematica.
[31] S. Shin. Galois representations arising from some compact Shimura varieties , 2011 .
[32] L. Clozel. Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n) , 1991 .
[33] J. Thorne,et al. On the rigid cohomology of certain Shimura varieties , 2014, 1411.6717.
[34] Barry Mazur,et al. On $p$-adic analytic families of Galois representations , 1986 .
[35] P. Scholze. On torsion in the cohomology of locally symmetric varieties , 2013, 1306.2070.
[36] David A. Buchsbaum,et al. Homological dimension in local rings , 1957 .
[37] Robert P. Langlands,et al. BASE CHANGE FOR GL(2) , 1980 .
[38] Richard Taylor,et al. Compatibility of Local and Global Langlands Correspondences , 2004, math/0412357.
[39] David Savitt. Modularity of some potentially Barsotti–Tate Galois representations , 2002, Compositio Mathematica.
[40] Henri Carayol,et al. Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert , 1986 .
[41] P. Scholze,et al. On the generic part of the cohomology of compact unitary Shimura varieties , 2015, 1511.02418.
[42] Mark Kisin,et al. The Fontaine-Mazur conjecture for {GL}_2 , 2009 .
[43] M. Kisin. Moduli of finite flat group schemes, and modularity , 2009 .
[44] Galois representations with conjectural connections to arithmetic cohomology , 2001, math/0102233.
[45] C. Breuil. SCHEMAS EN GROUPES ET CORPS DES NORMES , 2003 .
[46] Jean-Pierre Serre. Groupes $p$-divisibles , 1968 .
[47] Tsuyoshi Murata,et al. {m , 1934, ACML.
[48] Shu Sasaki. Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms , 2018, Inventiones mathematicae.
[49] A. Wiles. On ordinary λ-adic representations associated to modular forms , 1988 .
[50] Richard Taylor. Galois representations , 2002, math/0212403.
[51] Frank Calegari,et al. Modularity lifting beyond the Taylor–Wiles method , 2012, 1207.4224.
[52] J. Arthur,et al. Simple algebras, base change, and the advanced theory of the trace formula , 1989 .
[53] C. Khare,et al. On Serre's conjecture for 2-dimensional mod p representations of Gal( Q=Q) , 2009 .
[54] Toby Gee,et al. Automorphic Forms and Galois Representations: The conjectural connections between automorphic representations and Galois representations , 2010, 1009.0785.
[55] Lue Pan. On locally analytic vectors of the completed cohomology of modular curves , 2020, Forum of Mathematics, Pi.
[56] J. Fontaine. Groupes finis commutatifs sur les vecteurs de Witt , 1985 .
[57] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .
[58] Kai-Wen Lan,et al. Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties , 2013 .
[59] Richard Taylor,et al. Automorphy and irreducibility of some l-adic representations , 2013, Compositio Mathematica.
[60] Sur quelques repr\'esentations potentiellement cristallines de GL_2(Q_p) , 2006, math/0601545.
[61] P. Allen. Deformations of polarized automorphic Galois representations and adjoint Selmer groups , 2014, 1411.7661.
[62] Michel Verpeaux,et al. INTRODUCTION GÉNÉRALE , 2020, La structure ontologique-communionnelle de la personne.
[63] Jerrold Tunnell,et al. Artin’s conjecture for representations of octahedral type , 1981 .
[64] J. Thorne,et al. Level raising and symmetric power functoriality, II , 2015 .
[65] V. Pilloni. Formes modulaires p-adiques de Hilbert de poids 1 , 2017 .
[66] B. Conrad. Ramified deformation problems , 1999 .
[67] Payman L. Kassaei,et al. Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case , 2012, Forum of Mathematics, Sigma.
[68] Michael Harris,et al. Automorphy for some l-adic lifts of automorphic mod l Galois representations , 2008 .
[69] Laurent Moret-Bailly. Groupes de Picard et problèmes de Skolem. I , 1989 .
[70] P. Colmez. Les conjectures de monodromie $p$-adiques , 2002 .
[71] Pierre Colmez,et al. The p-adic local Langlands correspondence for GL_2(Q_p) , 2013, 1310.2235.
[72] Ravi Ramakrishna. Lifting Galois representations , 1999 .
[73] J. Thorne,et al. On the automorphy of l-adic Galois representations with small residual image With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Jack Thorne , 2011, Journal of the Institute of Mathematics of Jussieu.
[74] Jean-Pierre Serre,et al. Formes modulaires de poids $1$ , 1974 .
[75] Richard Taylor,et al. The Geometry and Cohomology of Some Simple Shimura Varieties. , 2002 .
[76] Jack A. Thorne,et al. Symmetric power functoriality for holomorphic modular forms , 2019, Publications mathématiques de l'IHÉS.
[77] Richard Taylor. The image of complex conjugation in l-adic representations associated to automorphic forms , 2012 .
[78] J. Thorne,et al. Automorphy lifting for residually reducible $l$-adic Galois representations, II , 2014, Compositio Mathematica.
[79] C. Breuil. SÉRIE SPÉCIALE p-ADIQUE ET COHOMOLOGIE ÉTALE COMPLÉTÉE par , 2009 .
[80] M. Kisin. Modularity of 2-dimensional Galois representations , 2005 .
[81] B. Conrad. Finite Group Schemes over Bases with Low Ramification , 1999, Compositio Mathematica.
[82] M. Emerton. A Local-Global Compatibility Conjecture in the p-adic Langlands Programme for GL 2/Q , 2006 .
[83] M. Kisin. Modularity of 2-adic Barsotti-Tate representations , 2009 .
[84] W. Marsden. I and J , 2012 .
[85] A. Wiles,et al. Base change and a problem of Serre , 2001 .
[86] Fred Diamond,et al. ON DEFORMATION RINGS AND HECKE RINGS , 1996 .
[87] Frank Calegari,et al. Minimal modularity lifting for nonregular symplectic representations , 2019, 1907.08691.
[88] H. Hida. p -adic ordinary Hecke algebras for GL ( 2 ) , 2017 .
[89] Minimal modularity lifting for GL2 over an arbitrary number field , 2012, 1209.5309.
[90] B. Mazur. Deforming Galois Representations , 1989 .
[91] S. Siksek,et al. Elliptic curves over real quadratic fields are modular , 2013, 1310.7088.
[92] Gary Cornell,et al. Modular Forms and Fermat's Last Theorem , 1997 .
[93] A. Caraiani,et al. On the image of complex conjugation in certain Galois representations , 2014, Compositio Mathematica.
[94] Payman L. Kassaei. Modularity lifting in parallel weight one , 2011, 1111.2804.
[95] Frank Calegari,et al. Abelian surfaces over totally real fields are potentially modular , 2018, Publications mathématiques de l'IHÉS.
[96] Frank Calegari. Even Galois representations and the Fontaine–Mazur conjecture , 2009, 0907.3427.
[97] L. Dieulefait. Automorphy of Symm^5(GL(2)) and base change , 2012, 1208.3946.
[98] Takeshi Saito. Modular forms and p-adic Hodge theory , 1997 .
[99] Fred Diamond,et al. The Taylor-Wiles construction and multiplicity one , 1997 .
[100] C. Breuil,et al. Représentations de GL2(Qp) et (φ,Γ)-modules , 2010 .
[101] J. Thorne,et al. Potential Automorphy and the Leopoldt conjecture , 2014, 1409.7007.
[102] Ravi Ramakrishna. On a variation of Mazur's deformation functor , 1993 .
[104] R. Kottwitz. On the λ-adic representations associated to some simple Shimura varieties , 1992 .
[105] Deformation rings and Hecke algebras in the totally real case , 2006, math/0602606.
[106] On degree 2 Galois representations over F4. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[107] Akshay Venkatesh,et al. A torsion Jacquet--Langlands correspondence , 2012, 1212.3847.
[108] R. Coleman. Classical and overconvergent modular forms , 1995 .
[109] Takeshi Tsuji. p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case , 1999 .
[110] Richard Taylor. REMARKS ON A CONJECTURE OF FONTAINE AND MAZUR , 2002, Journal of the Institute of Mathematics of Jussieu.
[111] J. Tate. The non-existence of certain Galois extensions of Q unramified outside 2 , 1994 .
[112] M. Harris. Potential Automorphy of Odd-Dimensional Symmetric Powers of Elliptic Curves and Applications , 2009 .
[113] M. Dickinson. On the modularity of certain 2-adic Galois representations , 2001 .
[114] B. Mazur,et al. Nearly ordinary Galois deformations over arbitrary number fields , 2007, Journal of the Institute of Mathematics of Jussieu.
[115] G. Böckle. On the density of modular points in universal deformation spaces , 2001 .
[116] A. Wiles,et al. Residually reducible representations and modular forms , 1999 .
[117] M. Kisin. Potentially semi-stable deformation rings , 2007 .
[118] Richard Taylor,et al. A family of Calabi-Yau varieties and potential automorphy , 2010 .
[119] D. Geraghty. Modularity lifting theorems for ordinary Galois representations , 2018, Mathematische Annalen.
[120] Akshay Venkatesh,et al. Derived Galois deformation rings , 2016, 1608.07236.
[121] Richard Taylor,et al. Icosahedral Galois Representations , 1978 .
[122] P. Colmez. Représentations triangulines de dimension 2 , 2008 .
[123] P. Colmez. Une correspondance de Langlands locale p-adique pour les repre-sentations semi-stables de dimension , 2004 .
[124] An Extension of Wiles’ Results , 1997 .
[125] J. Fontaine,et al. Construction de représentations $p$-adiques , 1982 .
[126] Toby Gee,et al. The Sato-Tate conjecture for Hilbert modular forms , 2009, 0912.1054.
[127] M. Kisin. The Structure of Potentially Semi-Stable Deformation Rings , 2011 .
[128] G. Boxer. Torsion in the Coherent Cohomology of Shimura Varieties and Galois Representations , 2015, 1507.05922.
[129] Le lemme fondamental pour les groupes unitaires , 2004, math/0404454.
[130] Companion forms and weight one forms , 1999, math/9905207.
[131] David Geraghty,et al. Potential automorphy and change of weight , 2010, 1010.2561.
[132] G. Harcos,et al. l-Adic representations associated to modular forms over imaginary quadratic fields , 2007, 0707.1338.
[133] J. Shalika,et al. On Euler Products and the Classification of Automorphic Forms II , 1981 .
[134] Jean-Pierre Serre,et al. Fermat ’ s Last Theorem , 2017 .
[135] Fred Diamond,et al. Modularity of Certain Potentially Barsotti-Tate Galois Representations , 1999 .
[136] Toby Gee. Automorphic lifts of prescribed types , 2008, 0810.1877.
[137] Vytautas Paškūnas,et al. The image of Colmez’s Montreal functor , 2010, 1005.2008.
[138] V. Pilloni. Higher coherent cohomology and p -adic modular forms of singular weights , 2020, Duke Mathematical Journal.
[139] Fred Diamond,et al. La série principale unitaire de GL2(Qp): vecteurs localement analytiques , 2014 .