Principles of verified numerical integration

We describe methods for the numerical calculation of integrals with verified error bounds. The problems range from integration over an interval to integration of parameter-dependent integrands over the whole d-variate space. It is argued, why we use bounds for the integrands in the complex plane as a tool for bounding the error in our own integration software.

[1]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[2]  Martin Berz,et al.  New Methods for High-Dimensional Verified Quadrature , 1999, Reliab. Comput..

[3]  U. Kulisch,et al.  Scientific Computing with Automatic Result Verification. , 1994 .

[4]  Bruno Lang,et al.  A Comparison of Subdivision Strategies for Verified Multi-Dimensional Gaussian Quadrature , 1998, SCAN.

[5]  L. B. Rall,et al.  Adaptive, self-validating numerical quadrature , 1987 .

[6]  G. Corliss Computing Narrow Inclusions for Definite Integrals. , 1986 .

[7]  Boolean Constructed Cubature Formulas of Interpolatory Type , 1982 .

[8]  Knut Petras,et al.  Gaussian integration of Chebyshev polynomials and analytic functions , 1995, Numerical Algorithms.

[9]  Klaus-Jürgen Förster,et al.  ON THE ESTIMATION OF LINEAR FUNCTIONALS , 1987 .

[10]  K. Petras Gaussian Versus Optimal Integration of Analytic Functions , 1998 .

[11]  L. B. Rall,et al.  INTE: A UNIVAC 1108/1110 Program for Numerical Integration with Rigorous Error Estimation. , 1975 .

[12]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[13]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[14]  K. Petras Gaussian quadrature formulae-second peano kernels, nodes, weights and Bessel functions , 1993 .

[15]  K. Petras Self-validating integration and approximation of piecewise analytic functions , 2002 .

[16]  M. C. Eiermann Automatic, guaranteed integration of analytic functions , 1989 .

[17]  T. Csendes Developments in Reliable Computing , 2000 .

[18]  A. Markoff Sur la méthode de Gauss pour le calcul approché des intégrales , 1885 .

[19]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .