Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7−yCa0.3+yMn1−yRuyO3 (0≤y<0.3): the role of Mn-Ru t2g super-exchange

The eg-orbital double-exchange mechanism as the core of physics of colossal magnetoresistance (CMR) manganites is well known, which usually covers up the role of super-exchange at the t2g-orbitals. The role of the double-exchange mechanism is maximized in La0.7Ca0.3MnO3, leading to the concurrent metal-insulator transition and ferromagnetic transition as well as CMR effect. In this work, by a set of synchronous Ru-substitution and Ca-substitution experiments on La0.7–yCa0.3+yMn1–yRuyO3, we demonstrate that the optimal ferromagnetism in La0.7Ca0.3MnO3 can be further enhanced. It is also found that the metal-insulator transition and magnetic transition can be separately modulated. By well-designed experimental schemes with which the Mn3+-Mn4+ double-exchange is damaged as weakly as possible, it is revealed that this ferromagnetism enhancement is attributed to the Mn-Ru t2g ferromagnetic super-exchange. The present work allows a platform on which the electro-transport and magnetism of rare-earth manganites can be controlled by means of the t2g-orbital physics of strongly correlated transition metal oxides.

[1]  Q. Jia,et al.  Transport‐magnetism correlations in the ferromagnetic oxide La0.7Ca0.3MnO3 , 1995 .

[2]  T. Asaka,et al.  Microscopic phase separation and ferromagnetic microdomains in Cr-doped Nd0.5Ca0.5MnO3 , 2003 .

[3]  S.-W. Cheong,et al.  Atomic-scale images of charge ordering in a mixed-valence manganite , 2002, Nature.

[4]  Littlewood,et al.  Double exchange alone does not explain the resistivity of La1-xSrxMnO3. , 1995, Physical review letters.

[5]  D. Kozlenko,et al.  High pressure effects on the crystal and magnetic structure of La0.7Sr0.3MnO3 , 2004 .

[6]  A P Ramirez REVIEW ARTICLE: Colossal magnetoresistance , 1997 .

[7]  A. Maignan,et al.  Comparison ofCaMn1−xRuxO3andCaMn1−yMoyO3perovskites , 2003 .

[8]  C S Alexander,et al.  Sensitivity to disorder of the metallic state in the ruthenates. , 2002, Physical review letters.

[9]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[10]  Y. Moritomo,et al.  Neutron investigation of Ru-doped Nd1/2Ca1/2MnO3: Comparison with Cr-doped Nd1/2Ca1/2MnO3 , 2002 .

[11]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[12]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[13]  Kido,et al.  Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. , 1995, Physical review. B, Condensed matter.

[14]  Ikeda,et al.  Invar effect of SrRuO3: Itinerant electron magnetism of Ru 4d electrons. , 1996, Physical review. B, Condensed matter.

[15]  J. Fierro,et al.  Properties and Applications of Perovskite-Type Oxides , 1992 .

[16]  Cheong,et al.  Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. , 1995, Physical review letters.

[17]  L. M. Rodriguez-Martinez,et al.  Cation disorder and size effects in magnetoresistive manganese oxide perovskites. , 1996, Physical review. B, Condensed matter.

[18]  A. Maignan,et al.  Avalanches, irreversibility, and phase separation in Co-substituted Pr 0.50 Ca 0.50 Mn 1-x Co x O 3 , 2006 .

[19]  Rounding of a first-order magnetic phase transition in Ga-doped La0.67Ca0.33MnO3 , 2004, cond-mat/0407486.

[20]  M. Hervieu,et al.  Ru-Induced Ferromagnetism and Metallicity in Mn(IV)-Rich Manganites Ln0.4Ca0.6MnO3 , 2000 .

[21]  E. Dagotto,et al.  Reemergent metal-insulator transitions in manganites exposed with spatial confinement. , 2008, Physical review letters.

[22]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .

[23]  S. Dou,et al.  Large low-field magnetoresistance over a wide temperature range induced by weak-link grain boundaries in La0.7Ca0.3MnO3 , 1998 .

[24]  L. Malavasi,et al.  Redox behavior of Ru-dopedLa1−xNaxMnO3+δmanganites , 2005 .

[25]  S. Dong,et al.  Enhanced ferromagnetism, metal-insulator transition, and large magnetoresistance in La1−xCaxMn1−xRuxO3 free of eg-orbital double-exchange , 2014 .

[26]  Jirong Sun,et al.  Doping effects arising from Fe and Ge for Mn in La0.7Ca0.3MnO3 , 1998 .

[27]  K. Dörr,et al.  XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content , 2006 .

[28]  G. Gorodetsky,et al.  Crystallographic structure and magnetic ordering inCaMn1−xRuxO3(x⩽0.40)manganites: Neutron diffraction, ac susceptibility, and electron magnetic resonance studies , 2004 .

[29]  Schultz,et al.  Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. , 1993, Physical review letters.

[30]  Formation of finite antiferromagnetic clusters and the effect of electronic phase separation in Pr0.5Ca0.5Mn0.975Al0.025O3. , 2004, Physical review letters.

[31]  Y. Okimoto,et al.  Diffuse Phase Transition and Phase Separation in Cr-Doped Nd 1/2 Ca 1/2 MnO 3 : A Relaxor Ferromagnet , 1999 .

[32]  P. M. Raccah,et al.  Magnetic Properties of SrRuO3 and CaRuO3 , 1968 .

[33]  Yu-heng Zhang,et al.  Effect of Ru doping in La0.5Sr0.5MnO3 and La0.45Sr0.55MnO3 , 2006 .

[34]  H. Song,et al.  Magnetic and electronic properties of transition-metal-substituted perovskite manganites—La0.7Ca0.3Mn0.95X0.05O3 (X=Fe,Co,Ni) , 2001 .

[35]  Y. Moritomo,et al.  Magnetic Phase Diagrams and Lattice Structure of Nd1/2Ca1/2(Mn1-yMy)O3 (M=Ru,Cr and Sc) , 2003 .

[36]  S. Cheong,et al.  Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites , 1999, Nature.

[37]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[38]  E. Dagotto,et al.  Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. , 2001, Physical review letters.