Parameterized Algorithms for Book Embedding Problems
暂无分享,去创建一个
Robert Ganian | Fabrizio Montecchiani | Sujoy Bhore | Martin Nöllenburg | Fabrizio Montecchiani | M. Nöllenburg | Robert Ganian | S. Bhore
[1] Paul C. Kainen,et al. Some recent results in topological graph theory , 1974 .
[2] Ge Xia,et al. Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..
[3] Nancy G. Kinnersley,et al. The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..
[4] Michal Pilipczuk,et al. Parameterized Algorithms , 2015, Springer International Publishing.
[5] Reinhard Diestel,et al. Graph Theory , 1997 .
[6] David R. Wood,et al. Graph Treewidth and Geometric Thickness Parameters , 2005, GD.
[7] Paul D. Seymour,et al. Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.
[8] David Eppstein,et al. Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth , 2014, GD.
[9] Emilio Di Giacomo,et al. 1-Page and 2-Page Drawings with Bounded Number of Crossings per Edge , 2015, IWOCA.
[10] R. Downey,et al. Fundamentals of Parameterized Complexity , 2013, Texts in Computer Science.
[11] Stefan Szeider,et al. SAT-Encodings for Special Treewidth and Pathwidth , 2017, SAT.
[12] Robert Ganian,et al. Improving Vertex Cover as a Graph Parameter , 2015, Discret. Math. Theor. Comput. Sci..
[13] Michael R. Fellows,et al. Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.
[14] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[15] Sumio Masuda,et al. Crossing Minimization in Linear Embeddings of Graphs , 1990, IEEE Trans. Computers.
[16] Jaroslav Nesetril,et al. Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.
[17] Arnold L. Rosenberg,et al. Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .
[18] Robert Ganian,et al. The Complexity Landscape of Decompositional Parameters for ILP , 2016, AAAI.
[19] Mihalis Yannakais,et al. Embedding planar graphs in four pages , 1989, STOC 1989.
[20] Sven Mallach,et al. Linear Ordering Based MIP Formulations for the Vertex Separation or Pathwidth Problem , 2017, IWOCA.
[21] Michael A. Bekos,et al. Two-Page Book Embeddings of 4-Planar Graphs , 2014, Algorithmica.
[22] David R. Wood,et al. On the Book Thickness of k-Trees , 2011, Discret. Math. Theor. Comput. Sci..
[23] M. Jansen. Sparsity , 2019, Wiley StatsRef: Statistics Reference Online.
[24] P. Stadler,et al. RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties , 1999, Bulletin of mathematical biology.
[25] Paul C. Kainen,et al. The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.
[26] Lenwood S. Heath,et al. The pagenumber of k-trees is O(k) , 2001, Discret. Appl. Math..
[27] Walter Unger,et al. The Complexity of Colouring Circle Graphs (Extended Abstract) , 1992, STACS.
[28] Gregory Gutin,et al. The Mixed Chinese Postman Problem Parameterized by Pathwidth and Treedepth , 2016, SIAM J. Discret. Math..
[29] David Eppstein,et al. Parameterized Complexity of 1-Planarity , 2013, WADS.
[30] Hisao Tamaki,et al. An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization , 2017, IPEC.
[31] David R. Wood,et al. On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..
[32] Walter UngerFachbereich. The Complexity of Colouring Circle Graphs , 1992 .
[33] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.