Parameterized Algorithms for Book Embedding Problems

[1]  Paul C. Kainen,et al.  Some recent results in topological graph theory , 1974 .

[2]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[3]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..

[4]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[5]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[6]  David R. Wood,et al.  Graph Treewidth and Geometric Thickness Parameters , 2005, GD.

[7]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[8]  David Eppstein,et al.  Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth , 2014, GD.

[9]  Emilio Di Giacomo,et al.  1-Page and 2-Page Drawings with Bounded Number of Crossings per Edge , 2015, IWOCA.

[10]  R. Downey,et al.  Fundamentals of Parameterized Complexity , 2013, Texts in Computer Science.

[11]  Stefan Szeider,et al.  SAT-Encodings for Special Treewidth and Pathwidth , 2017, SAT.

[12]  Robert Ganian,et al.  Improving Vertex Cover as a Graph Parameter , 2015, Discret. Math. Theor. Comput. Sci..

[13]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[14]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[15]  Sumio Masuda,et al.  Crossing Minimization in Linear Embeddings of Graphs , 1990, IEEE Trans. Computers.

[16]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[17]  Arnold L. Rosenberg,et al.  Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .

[18]  Robert Ganian,et al.  The Complexity Landscape of Decompositional Parameters for ILP , 2016, AAAI.

[19]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[20]  Sven Mallach,et al.  Linear Ordering Based MIP Formulations for the Vertex Separation or Pathwidth Problem , 2017, IWOCA.

[21]  Michael A. Bekos,et al.  Two-Page Book Embeddings of 4-Planar Graphs , 2014, Algorithmica.

[22]  David R. Wood,et al.  On the Book Thickness of k-Trees , 2011, Discret. Math. Theor. Comput. Sci..

[23]  M. Jansen Sparsity , 2019, Wiley StatsRef: Statistics Reference Online.

[24]  P. Stadler,et al.  RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties , 1999, Bulletin of mathematical biology.

[25]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[26]  Lenwood S. Heath,et al.  The pagenumber of k-trees is O(k) , 2001, Discret. Appl. Math..

[27]  Walter Unger,et al.  The Complexity of Colouring Circle Graphs (Extended Abstract) , 1992, STACS.

[28]  Gregory Gutin,et al.  The Mixed Chinese Postman Problem Parameterized by Pathwidth and Treedepth , 2016, SIAM J. Discret. Math..

[29]  David Eppstein,et al.  Parameterized Complexity of 1-Planarity , 2013, WADS.

[30]  Hisao Tamaki,et al.  An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization , 2017, IPEC.

[31]  David R. Wood,et al.  On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[32]  Walter UngerFachbereich The Complexity of Colouring Circle Graphs , 1992 .

[33]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.