Eigenvalues and degree deviation in graphs

Abstract Let G be a graph with n vertices and m edges and let μ(G) = μ1(G) ⩾ ⋯ ⩾ μn(G) be the eigenvalues of its adjacency matrix. Set s ( G ) = ∑ u ∈ V ( G ) ∣ d ( u ) - 2 m / n ∣ . We prove that s 2 ( G ) 2 n 2 2 m ⩽ μ ( G ) - 2 m n ⩽ s ( G ) . In addition we derive similar inequalities for bipartite G. We also prove that the inequality μ k ( G ) + μ n - k + 2 ( G ¯ ) ⩾ - 1 - 2 2 s ( G ) holds for every k = 2, … , n. Finally we prove that for every graph G of order n, μ n ( G ) + μ n ( G ¯ ) ⩽ - 1 - s 2 ( G ) 2 n 3 . We show that these inequalities are tight up to a constant factor.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  W. Haemers Interlacing eigenvalues and graphs , 1995 .

[3]  Xiao-Dong Zhang,et al.  On the Spectral Radius of Graphs with Cut Vertices , 2001, J. Comb. Theory, Ser. B.

[4]  R. Stanley A Bound on the Spectral Radius of Graphs with e Edges , 1987 .

[5]  M. Hofmeister,et al.  Spectral Radius and Degree Sequence , 1988 .

[6]  F. K. Bell A note on the irregularity of graphs , 1992 .

[7]  Michael Doob,et al.  Spectra of graphs , 1980 .

[8]  Béla Bollobás,et al.  Graphs and Hermitian matrices: eigenvalue interlacing , 2004, Discret. Math..

[9]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[10]  L. Collatz,et al.  Spektren endlicher grafen , 1957 .

[11]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[12]  Eva Nosal,et al.  Eigenvalues of graphs , 1970 .