Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus

[1]  H. Bode,et al.  Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria , 2017, Environmental microbiology.

[2]  Rolf Backofen,et al.  Photorhabdus‐nematode symbiosis is dependent on hfq‐mediated regulation of secondary metabolites , 2017, Environmental microbiology.

[3]  Qiuqin Zhou,et al.  Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. , 2017, Current topics in microbiology and immunology.

[4]  Jie Pan,et al.  The impact of Cu, Zn and Cr salts on the relationship between insect and plant parasitic nematodes: A reduction in biocontrol efficacy , 2016 .

[5]  H. Bode,et al.  Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle , 2016, BMC Genomics.

[6]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[7]  R. ffrench-Constant,et al.  From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity , 2015, PloS one.

[8]  H. Schwalbe,et al.  Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids. , 2015, Angewandte Chemie.

[9]  H. Bode,et al.  Bioactive natural products from novel microbial sources , 2015, Annals of the New York Academy of Sciences.

[10]  J. Crawford,et al.  Lumiquinone A, an α-Aminomalonate-Derived Aminobenzoquinone from Photorhabdus luminescens. , 2015, Journal of natural products.

[11]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[12]  Qiuqin Zhou,et al.  Simple “On‐Demand” Production of Bioactive Natural Products , 2015, Chembiochem : a European journal of chemical biology.

[13]  H. Bode,et al.  Insect‐Specific Production of New GameXPeptides in Photorhabdus luminescens TTO1, Widespread Natural Products in Entomopathogenic Bacteria , 2015, Chembiochem : a European journal of chemical biology.

[14]  Gaston H. Gonnet,et al.  The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements , 2014, Nucleic Acids Res..

[15]  P. Kück,et al.  FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies , 2014, Frontiers in Zoology.

[16]  S. Forst,et al.  Role of Secondary Metabolites in Establishment of the Mutualistic Partnership between Xenorhabdus nematophila and the Entomopathogenic Nematode Steinernema carpocapsae , 2014, Applied and Environmental Microbiology.

[17]  H. Weber,et al.  Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis , 2014, Proceedings of the National Academy of Sciences.

[18]  Steven R. Tannenbaum,et al.  Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals , 2014, PloS one.

[19]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[20]  C. Médigue,et al.  Attenuated Virulence and Genomic Reductive Evolution in the Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii , 2014, Genome biology and evolution.

[21]  H. Bode,et al.  Rapid Determination of the Amino Acid Configuration of Xenotetrapeptide , 2014, Chembiochem : a European journal of chemical biology.

[22]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[23]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[24]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[25]  Marcel Kaiser,et al.  Structure and biosynthesis of xenoamicins from entomopathogenic Xenorhabdus. , 2013, Chemistry.

[26]  A. Batzer,et al.  Structure determination of the bioactive depsipeptide xenobactin from Xenorhabdus sp. PB30.3 , 2013 .

[27]  P. Dorrestein,et al.  Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria. , 2013, Journal of the American Chemical Society.

[28]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[29]  Gaston H. Gonnet,et al.  Inferring Hierarchical Orthologous Groups from Orthologous Gene Pairs , 2013, PloS one.

[30]  Sergey I. Nikolenko,et al.  BayesHammer: Bayesian clustering for error correction in single-cell sequencing , 2012, BMC Genomics.

[31]  R. Cichewicz,et al.  Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets. , 2012, Journal of natural products.

[32]  S. Peacock,et al.  Diversity of Xenorhabdus and Photorhabdus spp. and Their Symbiotic Entomopathogenic Nematodes from Thailand , 2012, PloS one.

[33]  S. Rasmussen,et al.  Identification of acquired antimicrobial resistance genes , 2012, The Journal of antimicrobial chemotherapy.

[34]  Alexander R. Martin,et al.  A Single Promoter Inversion Switches Photorhabdus Between Pathogenic and Mutualistic States , 2012, Science.

[35]  M. Roeffaers,et al.  Small molecule perimeter defense in entomopathogenic bacteria , 2012, Proceedings of the National Academy of Sciences.

[36]  Nuno Bandeira,et al.  Mass spectral molecular networking of living microbial colonies , 2012, Proceedings of the National Academy of Sciences.

[37]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[38]  H. Bode,et al.  Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. , 2012, Chemistry.

[39]  A. von Haeseler,et al.  A Consistent Phylogenetic Backbone for the Fungi , 2011, Molecular biology and evolution.

[40]  Christophe Dessimoz,et al.  Inferring orthology and paralogy. , 2012, Methods in molecular biology.

[41]  H. Bode,et al.  A natural prodrug activation mechanism in nonribosomal peptide synthesis. , 2011, Nature chemical biology.

[42]  C. Walsh,et al.  NRPS Substrate Promiscuity Diversifies the Xenematides , 2011, Organic letters.

[43]  D. Clarke,et al.  A metabolic switch is involved in lifestyle decisions in Photorhabdus luminescens , 2010, Molecular microbiology.

[44]  S. Stock,et al.  A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (γ-Proteobacteria: Enterobacteriaceae) , 2010, Systematic Parasitology.

[45]  M. Klein,et al.  Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae , 2009, Journal of applied microbiology.

[46]  Mihai Pop,et al.  ARDB—Antibiotic Resistance Genes Database , 2008, Nucleic Acids Res..

[47]  J. Imhoff,et al.  Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. , 2008, Journal of natural products.

[48]  R. ffrench-Constant,et al.  Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. , 2007, Toxicon : official journal of the International Society on Toxinology.

[49]  Rolf Müller,et al.  The impact of bacterial genomics on natural product research. , 2005, Angewandte Chemie.

[50]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[52]  Jun Yu,et al.  VFDB: a reference database for bacterial virulence factors , 2004, Nucleic Acids Res..

[53]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[54]  A. Danchin,et al.  The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens , 2003, Nature Biotechnology.

[55]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[56]  S. Nadler,et al.  Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) Inferred From Ribosomal DNA Sequences and Morphological Characters , 2001, The Journal of parasitology.

[57]  Adam Godzik,et al.  Clustering of highly homologous sequences to reduce the size of large protein databases , 2001, Bioinform..

[58]  J. Webster,et al.  Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus--Heterorhabditis infected Galleria mellonella larvae. , 2000, FEMS microbiology letters.

[59]  R. Ehlers,et al.  Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. , 2000, Journal of invertebrate pathology.

[60]  E. Stackebrandt,et al.  Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. , 1997, Annual review of microbiology.

[61]  D. Segal,et al.  Genetic diversity in wild and laboratory populations of Heterorhabditis bacteriophora as determined by RAPD-PCR analysis , 1997 .

[62]  R. Akhurst Xenorhabdus nematophilus subsp. poinarii: Its Interaction with Insect Pathogenic Nematodes , 1986 .

[63]  H. Budzikiewicz,et al.  Tilivalline, a new pyrrolo[2, 1-c][1,4] benzodiazepine metabolite from klebsiella , 1982 .