Maps Around Me

Visual exploration of maps often requires a contextual understanding at multiple scales and locations. Multiview map layouts, which present a hierarchy of multiple views to reveal detail at various scales and locations, have been shown to support better performance than traditional single-view exploration on desktop displays. This paper investigates the extension of such layouts of 2D maps into 3D immersive spaces, which are not limited by the real-estate barrier of physical screens and support sensemaking through spatial interaction. Based on our initial implementation of immersive multiview maps, we conduct an exploratory study with 16 participants aimed at understanding how people place and view such maps in immersive space. We observe the layouts produced by users performing map exploration search, comparison and route-planning tasks. Our qualitative analysis identifies patterns in layoutgeometry (spherical, spherical cap, planar),overview-detail relationship (central window, occluding, coordinated) andinteraction strategy. Based on these observations, along with qualitative feedback from a user walkthrough session, we identify implications and recommend features for immersive multiview map systems. Our main findings are that participants tend to prefer and arrange multiview maps in a spherical cap layout around them and that they often rearrange the views during tasks.

[1]  Mary Czerwinski,et al.  The Task Gallery: a 3D window manager , 2000, CHI.

[2]  Desney S. Tan,et al.  Women take a wider view , 2002, CHI.

[3]  Mats Lind,et al.  2D vs 3D, implications on spatial memory , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[4]  Hanspeter Pfister,et al.  Pattern-Driven Navigation in 2D Multiscale Visualizations with Scalable Insets , 2018, bioRxiv.

[5]  Chris North,et al.  POWERWALL: int. workshop on interactive, ultra-high-resolution displays , 2013, CHI Extended Abstracts.

[6]  Harald Reiterer,et al.  SpaceFold and PhysicLenses: simultaneous multifocus navigation on touch surfaces , 2014, AVI.

[7]  Jock D. Mackinlay,et al.  The perspective wall: detail and context smoothly integrated , 1991, CHI.

[8]  Roy A. Ruddle,et al.  HiReD: a high-resolution multi-window visualisation environment for cluster-driven displays , 2015, EICS.

[9]  Shumin Zhai,et al.  The influence of muscle groups on performance of multiple degree-of-freedom input , 1996, CHI.

[10]  Carl Gutwin,et al.  The Effect of View Techniques on Collaboration and Awareness in Tabletop Map-Based Tasks , 2014, ITS '14.

[11]  Chris North,et al.  Move to improve: promoting physical navigation to increase user performance with large displays , 2007, CHI.

[12]  Colin Ware,et al.  Zooming, multiple windows, and visual working memory , 2002, AVI '02.

[13]  Chris North,et al.  Effects of tiled high-resolution display on basic visualization and navigation tasks , 2005, CHI Extended Abstracts.

[14]  Andy Cockburn,et al.  3D or not 3D?: evaluating the effect of the third dimension in a document management system , 2001, CHI.

[15]  Andy Cockburn,et al.  Evaluating the effectiveness of spatial memory in 2D and 3D physical and virtual environments , 2002, CHI.

[16]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[17]  Dennis Wixon,et al.  The Natural User Interface , 2011 .

[18]  Yalong Yang,et al.  Origin-Destination Flow Maps in Immersive Environments , 2019, IEEE Transactions on Visualization and Computer Graphics.

[19]  Kasper Hornbæk,et al.  Effects of Locomotion and Visual Overview on Spatial Memory when Interacting with Wall Displays , 2019, CHI.

[20]  Analyst's Workspace: An embodied sensemaking environment for large, high-resolution displays , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[21]  Tamara Munzner,et al.  A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence , 2010, A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence.

[22]  Niklas Elmqvist,et al.  Polyzoom: multiscale and multifocus exploration in 2d visual spaces , 2012, CHI.

[23]  George W. Furnas,et al.  Critical zones in desert fog: aids to multiscale navigation , 1998, UIST '98.

[24]  Yves Guiard,et al.  Target acquisition in multiscale electronic worlds , 2004, Int. J. Hum. Comput. Stud..

[25]  Christopher Andrews,et al.  Space to think: large high-resolution displays for sensemaking , 2010, CHI.

[26]  Kim Marriott,et al.  Tilt Map: Interactive Transitions Between Choropleth Map, Prism Map and Bar Chart in Immersive Environments , 2020, IEEE Transactions on Visualization and Computer Graphics.

[27]  Pourang Irani,et al.  The personal cockpit: a spatial interface for effective task switching on head-worn displays , 2014, CHI.

[28]  John T. Stasko,et al.  Mental Models, Visual Reasoning and Interaction in Information Visualization: A Top-down Perspective , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  N. Lam,et al.  On the Issues of Scale, Resolution, and Fractal Analysis in the Mapping Sciences* , 1992 .

[30]  Stacey D. Scott,et al.  Canyon: providing location awareness of multiple moving objects in a detail view on large displays , 2013, CHI.

[31]  James D. Hollan,et al.  Pad++: a zooming graphical interface for exploring alternate interface physics , 1994, UIST '94.

[32]  Gerd Bruder,et al.  Touching the Sphere: Leveraging Joint-Centered Kinespheres for Spatial User Interaction , 2016, SUI.

[33]  Roy A. Ruddle,et al.  Performance and interaction behaviour during visual search on large, high-resolution displays , 2015, Inf. Vis..

[34]  Colin Ware,et al.  Zooming versus multiple window interfaces: Cognitive costs of visual comparisons , 2006, TCHI.

[35]  Jeffrey Heer,et al.  The Effects of Interactive Latency on Exploratory Visual Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[36]  Sabine Timpf,et al.  Hierarchical Structures in Map Series , 1998 .

[37]  Niklas Elmqvist,et al.  Exploring the design space of composite visualization , 2012, 2012 IEEE Pacific Visualization Symposium.

[38]  Wolfgang Stuerzlinger,et al.  Evaluating an Immersive Space-Time Cube Geovisualization for Intuitive Trajectory Data Exploration , 2019, IEEE Transactions on Visualization and Computer Graphics.

[39]  Benjamin B. Bederson,et al.  A review of overview+detail, zooming, and focus+context interfaces , 2009, CSUR.

[40]  Stefan Jeschke,et al.  Route Visualization Using Detail Lenses , 2010, IEEE Transactions on Visualization and Computer Graphics.

[41]  Niklas Elmqvist,et al.  Dynamic Insets for Context‐Aware Graph Navigation , 2011, Comput. Graph. Forum.

[42]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[43]  Pourang Irani,et al.  Ethereal planes: a design framework for 2D information space in 3D mixed reality environments , 2014, SUI.

[44]  Doug A. Bowman,et al.  Evaluating the Benefits of the Immersive Space to Think , 2020, 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW).

[45]  Mary Czerwinski,et al.  Data mountain: using spatial memory for document management , 1998, UIST '98.

[46]  Arjan Kuijper,et al.  Overview with details for exploring geo-located graphs on maps , 2016, Inf. Vis..

[47]  Robert E. Roth,et al.  An Empirically-Derived Taxonomy of Interaction Primitives for Interactive Cartography and Geovisualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[48]  M. Sheelagh T. Carpendale,et al.  VisLink: Revealing Relationships Amongst Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[49]  Bernhard Jenny,et al.  Immersive visualization with bar graphics , 2020, Cartography and Geographic Information Science.

[50]  Olivier Chapuis,et al.  Designing Coherent Gesture Sets for Multi-scale Navigation on Tabletops , 2018, CHI.

[51]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[52]  Eyal Ofek,et al.  Spatial Constancy of Surface-Embedded Layouts across Multiple Environments , 2015, SUI.

[53]  Bernhard Jenny,et al.  Augmented Reality Map Navigation with Freehand Gestures , 2019, 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[54]  Chris North,et al.  Evaluation of viewport size and curvature of large, high-resolution displays , 2006, Graphics Interface.

[55]  qcMIZCV QoKNQ,et al.  Increased Display Size and Resolution Improve Task Performance in Information-Rich Virtual Environments , 2006 .

[56]  Charles F. Jekel Obtaining non-linear orthotropic material models for PVC-coated polyester via inverse bubble inflation , 2016 .

[57]  Yasuhito Sawahata,et al.  Optimizing Visual Element Placement via Visual Attention Analysis , 2019, 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[58]  Arnaud Prouzeau,et al.  Design and Evaluation of Interactive Small Multiples Data Visualisation in Immersive Spaces , 2020, 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[59]  Pawel Wozniak,et al.  Interaction techniques for window management on large high-resolution displays , 2017, MUM.

[60]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[61]  Yang Li,et al.  Hierarchical route maps for efficient navigation , 2014, IUI.

[62]  Niklas Elmqvist,et al.  There Is No Spoon: Evaluating Performance, Space Use, and Presence with Expert Domain Users in Immersive Analytics , 2019, IEEE Transactions on Visualization and Computer Graphics.

[63]  Jean-Daniel Fekete,et al.  Melange: space folding for multi-focus interaction , 2008, CHI.

[64]  Bruce H. Thomas,et al.  ImAxes: Immersive Axes as Embodied Affordances for Interactive Multivariate Data Visualisation , 2017, UIST.

[65]  David Lindlbauer,et al.  HeatSpace: Automatic Placement of Displays by Empirical Analysis of User Behavior , 2017, UIST.

[66]  Matthias Klapperstück,et al.  Immersive Analytics , 2015, 2015 Big Data Visual Analytics (BDVA).

[67]  Johanna Beyer,et al.  Embodied Navigation in Immersive Abstract Data Visualization: Is Overview+Detail or Zooming Better for 3D Scatterplots? , 2020, IEEE Transactions on Visualization and Computer Graphics.

[68]  Eric D. Ragan,et al.  Questioning naturalism in 3D user interfaces , 2012, CACM.

[69]  Alan J. Dix,et al.  A taxonomy for and analysis of multi-person-display ecosystems , 2009, Personal and Ubiquitous Computing.

[70]  Chris North,et al.  EVALUATING THE BENEFITS OF TILED DISPLAYS FOR NAVIGATING MAPS , 2005 .

[71]  Kasper Hornbæk,et al.  Reading patterns and usability in visualizations of electronic documents , 2003, TCHI.

[72]  Bernhard Jenny,et al.  Elicitation study investigating hand and foot gesture interaction for immersive maps in augmented reality , 2020, Cartography and Geographic Information Science.

[73]  E. Hall,et al.  The Hidden Dimension , 1970 .

[74]  Matthias Klapperstück,et al.  ContextuWall: Multi-site collaboration using display walls , 2017, J. Vis. Lang. Comput..

[75]  Niklas Elmqvist,et al.  Fluid interaction for information visualization , 2011, Inf. Vis..

[76]  Michael E. Papka,et al.  Effects of Display Size and Resolution on User Behavior and Insight Acquisition in Visual Exploration , 2015, CHI.