Emerging applications of number theory

Trace formula for quantum integrable systems, lattice-point problem, and small divisors.- Theta-lifts of Maass waveforms.- The transfer operator approach to Selberg's zeta function and modular and Maass wave forms for PSL (2, ?).- Chaos and deviation from uniform distribution: eigenfunction computation applied modular arithmetic.- Logarithmic Sobolev techniques for random walks on graphs.- Eigenvalue statistics in quantum ideal gases.- Multifractal spectrum and Laplace spectrum.- Number theory and atomic densities.- Explicit formulas and oscillations.- Energy fluctuation analysis in integrable billiards in hyperbolic geometry.- On eigenfunctions of the Laplacian for Hecke triangle groups.- Eigenvalue spacings for regular graphs.- Classical limits of eigenfunctions for some completely integrable systems.- Does a quantum particle know the time ?.- Level spacings for Cayley graphs.- Eigenvalues of Ramanujan graphs.- Theta sums, Eisenstein series, and the semiclassical dynamics of a precessing spin.- Random walks on generalized Euclidean graphs.- Two proofs of Ihara's theorem.- Playing billiards with microwaves - quantum manifestations of classical chaos.- Characters of the symmetric groups: formulas, estimates and applications.- Number theory and formal languages.- Expander graphs and amenable quotients.- Ramanujan hypergraphs and Ramanujan geometries.- Constructing error-correcting codes from expander graphs.- Multipath zeta functions of graphs.- Eigenvalues of the Laplacian for Bianchi groups.- A survey of discrete trace formulas.- List of Participants.- Program Schedule.- Afterword.