Numerical Solution of Stochastic Mixed Volterra–Fredholm Integral Equations Driven by Space-Time Brownian Motion via Two-Dimensional Triangular Functions

[1]  M. Khodabin,et al.  Numerical Solution of a Model for Stochastic Polymer Equation Driven by Space–Time Brownian Motion via Homotopy Perturbation Method , 2016 .

[2]  K. Maleknejad,et al.  Modified Block Pulse Functions for Numerical Solution of Stochastic Volterra Integral Equations , 2014, J. Appl. Math..

[3]  Khosrow Maleknejad,et al.  Applications of two-dimensional triangular functions for solving nonlinear class of mixed Volterra-Fredholm integral equations , 2012, Math. Comput. Model..

[4]  Khosrow Maleknejad,et al.  Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions , 2012, Math. Comput. Model..

[5]  Khosrow Maleknejad,et al.  Solving nonlinear mixed Volterra-Fredholm integral equations with two dimensional block-pulse functions using direct method , 2011 .

[6]  Khosrow Maleknejad,et al.  Optimal control of Volterra integral equations via triangular functions , 2011, Math. Comput. Model..

[7]  Khosrow Maleknejad,et al.  Triangular functions (TF) method for the solution of nonlinear Volterra–Fredholm integral equations , 2010 .

[8]  Esmail Babolian,et al.  Two-dimensional triangular functions and their applications to nonlinear 2D Volterra-Fredholm integral equations , 2010, Comput. Math. Appl..

[9]  T. Damercheli,et al.  Numerical solution of stochastic mixed Volterra-Fredholm integral equations driven by space-time Brownian motion via two-dimensional block pulse functions , 2018 .

[10]  K. Maleknejad,et al.  Application of Triangular Functions to Numerical Solution of Stochastic Volterra Integral Equations , 2013 .

[11]  Khosrow Maleknejad,et al.  A numerical method for solving m-dimensional stochastic Itô-Volterra integral equations by stochastic operational matrix , 2012, Comput. Math. Appl..

[12]  Gautam Sarkar,et al.  A new set of orthogonal functions and its application to the analysis of dynamic systems , 2006, J. Frankl. Inst..

[13]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[14]  N. Ikeda,et al.  An Introduction to Malliavin's Calculus , 1984 .