Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dGittern

[1]  Thomas I. Seidman,et al.  Nonconvergence results for the application of least-squares estimation to Ill-posed problems , 1980 .

[2]  Martin Hanke,et al.  On Lanczos Based Methods for the Regularization of Discrete Ill-Posed Problems , 2001 .

[3]  Ralf Hiptmair,et al.  Multigrid for Discrete Differential Forms on Sparse Grids , 2003, Computing.

[4]  Andreas Rieder,et al.  A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization , 1997 .

[5]  John Quackenbush,et al.  Computational genetics: Computational analysis of microarray data , 2001, Nature Reviews Genetics.

[6]  Michael Griebel,et al.  On the Parallelization of the Sparse Grid Approach for Data Mining , 2001, LSSC.

[7]  Glenn Fung,et al.  Proximal support vector machine classifiers , 2001, KDD '01.

[8]  F. Delvos d-Variate Boolean interpolation , 1982 .

[9]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[10]  Michael Griebel,et al.  Multiscale Methods for the Simulation of Turbulent Flows , 2003 .

[11]  Ian H. Witten,et al.  Data mining : praktische Werkzeuge und Techniken für das maschinelle Lernen , 2001 .

[12]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[13]  Henryk Wozniakowski,et al.  Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..

[14]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[15]  William D. Penny,et al.  Bayesian neural networks for classification: how useful is the evidence framework? , 1999, Neural Networks.

[16]  E. Arge,et al.  Approximation of scattered data using smooth grid functions , 1995 .

[17]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[18]  Michael Griebel,et al.  Sparse grids for boundary integral equations , 1999, Numerische Mathematik.

[19]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[20]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[21]  J. Friedman Multivariate adaptive regression splines , 1990 .

[22]  David Haussler,et al.  Classifying G-protein coupled receptors with support vector machines , 2002, Bioinform..

[23]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[24]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[25]  Richard Uden,et al.  Data mining of 3D poststack seismic attribute volumes using Kohonen self-organizing maps , 2002 .

[26]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[27]  Arnold Neumaier,et al.  Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization , 1998, SIAM Rev..

[28]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[29]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[30]  M. Hegland Adaptive sparse grids , 2003 .

[31]  M. Griebel,et al.  On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .

[32]  Felipe Cucker,et al.  Best Choices for Regularization Parameters in Learning Theory: On the Bias—Variance Problem , 2002, Found. Comput. Math..

[33]  Kurt Hornik,et al.  The support vector machine under test , 2003, Neurocomputing.

[34]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[35]  Wolfgang Dahmen,et al.  On the regularization of dynamic data reconciliation problems , 2002 .

[36]  Irfan Altas,et al.  Approximation of a Thin Plate Spline Smoother Using Continuous Piecewise Polynomial Functions , 2003, SIAM J. Numer. Anal..

[37]  Gene H. Golub,et al.  Scientific computing , 1993 .

[38]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[39]  G. Wahba Spline models for observational data , 1990 .

[40]  F. Girosi,et al.  From regularization to radial, tensor and additive splines , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[41]  Hans-Joachim Bungartz,et al.  A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives , 1999, J. Complex..

[42]  T. Poggio,et al.  The Mathematics of Learning: Dealing with Data , 2005, 2005 International Conference on Neural Networks and Brain.

[43]  Aihui Zhou,et al.  Error analysis of the combination technique , 1999, Numerische Mathematik.

[44]  Witold Pedrycz,et al.  Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.

[45]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[46]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[47]  Wolfgang Marquardt,et al.  Stepwise Refinement of Sparse Grids in Data Mining Applications , 2003 .

[48]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[49]  Robert Plato,et al.  On the regularization of projection methods for solving III-posed problems , 1990 .

[50]  Angela Kunoth,et al.  Multilevel regularization of wavelet based fitting of scattered data – some experiments , 2005, Numerical Algorithms.

[51]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[52]  Linda Kaufman,et al.  Solving the quadratic programming problem arising in support vector classification , 1999 .

[53]  Eric R. Ziegel,et al.  Mastering Data Mining , 2001, Technometrics.

[54]  Serguei Dachkovski,et al.  Anisotropic function spaces and related semi–linear hypoelliptic equations , 2003 .

[55]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[56]  S. Saitoh Integral Transforms, Reproducing Kernels and Their Applications , 1997 .

[57]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[58]  G. Baszenski,et al.  Blending Approximations with Sine Functions , 1992 .

[59]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[60]  A. Tikhonov On the stability of inverse problems , 1943 .

[61]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[62]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[63]  Pieter W. Hemker,et al.  Application of an Adaptive Sparse-Grid Technique to a Model Singular Perturbation Problem , 2000, Computing.

[64]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[65]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[66]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[67]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[68]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[69]  Michael Griebel,et al.  Turbulence Simulation on Sparse Grids Using the Combination Method , 1994 .

[70]  Michael Griebel,et al.  The efficient solution of fluid dynamics problems by the combination technique , 1995, Forschungsberichte, TU Munich.

[71]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[72]  Barbara Kaltenbacher,et al.  Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems , 2000 .

[73]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[74]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[75]  Jing Peng,et al.  SVM vs regularized least squares classification , 2004, ICPR 2004.

[76]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[77]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[78]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[79]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[80]  Harold W. Kuhn,et al.  Some Combinatorial Lemmas in Topology , 1960, IBM J. Res. Dev..

[81]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[82]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[83]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[84]  S. Odewahn,et al.  Automated star/galaxy discrimination with neural networks , 1992 .

[85]  S. Achatz,et al.  Higher Order Sparse Grid Methods for Elliptic Partial Differential Equations with Variable Coefficients , 2003, Computing.

[86]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[87]  Vladimir N. Temlyakov,et al.  On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..

[88]  Harry Yserentant,et al.  Hierarchical bases , 1992 .

[89]  A. Lopez-Molinero,et al.  Classification of ancient Roman glazed ceramics using the neural network of Self-Organizing Maps , 2000, Fresenius' journal of analytical chemistry.

[90]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[91]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[92]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[93]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[94]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[95]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[96]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[97]  Sergei V. Pereverzev,et al.  Self-regularization of projection methods with a posteriori discretization level choice for severely ill-posed problems , 2003 .

[98]  U. Rüde,et al.  Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems , 1992, Forschungsberichte, TU Munich.

[99]  Ilse C. F. Ipsen,et al.  The Lack of Influence of the Right-Hand Side on the Accuracy of Linear System Solution , 1998, SIAM J. Sci. Comput..

[100]  S. Canu,et al.  M L ] 6 O ct 2 00 9 Functional learning through kernel , 2009 .

[101]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[102]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[103]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[104]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[105]  Pieter W. Hemker Sparse-grid finite-volume multigrid for 3D-problems , 1995, Adv. Comput. Math..

[106]  Karin Frank,et al.  Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes , 1996, J. Complex..

[107]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[108]  G. Baszenski n-th Order Polynomial Spline Blending , 1985 .

[109]  Michael Griebel,et al.  The Combination Technique for the Sparse Grid Solution of PDE's on Multiprocessor Machines , 1992, Parallel Process. Lett..

[110]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[111]  Bernhard Schölkopf,et al.  The connection between regularization operators and support vector kernels , 1998, Neural Networks.

[112]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.