Concentration-Dependent Shielding of Electrostatic Potentials Inside the Gramicidin A Channels

, 127-157) is a neutral polypeptide that acts as a channel to allow ions to cross otherwise impermeablemembranes. We compute sodium chloride currents through the gramicidin A channel using the spectralelementmethodtosolvethethree-dimensionalPoisson-Nernst-Planckequations.Thepotentialprofilesthrough the channel can be resolved into an intrinsic and extrinsic component with surprisingly littleambiguity; that is, the system is nearly linear in that sense. However, the intrinsic potential dependsstrongly on the bath concentrations: variations in the bath concentrations change the intrinsic potentialby several (ˇ6.6) times the thermal voltage

[1]  O. Andersen Kinetics of ion movement mediated by carriers and channels. , 1989, Methods in enzymology.

[2]  R. Eisenberg,et al.  Hydrodynamic model of temperature change in open ionic channels. , 1995, Biophysical journal.

[3]  Shin-Ho Chung,et al.  Study of ionic currents across a model membrane channel using Brownian dynamics. , 1998, Biophysical journal.

[4]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[5]  Henry Eyring,et al.  The Absolute Rate of Reactions in Condensed Phases , 1935 .

[6]  Olivier Bernard,et al.  New perspectives in transport phenomena in electrolytes , 1996 .

[7]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[8]  B. Eisenberg Ionic channels in biological membranes- electrostatic analysis of a natural nanotube , 1998, 1610.04123.

[9]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[10]  J. Simonin,et al.  Ionic Solutions in the Binding Mean Spherical Approximation: Thermodynamic Properties of Mixtures of Associating Electrolytes , 1999 .

[11]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[12]  R. Eisenberg,et al.  Constant fields and constant gradients in open ionic channels. , 1992, Biophysical journal.

[13]  G. R. Smith,et al.  Simulation approaches to ion channel structure–function relationships , 2001, Quarterly Reviews of Biophysics.

[14]  Rob D. Coalson,et al.  A molecular dynamics study of dielectric friction , 1996 .

[15]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[16]  R. Eisenberg,et al.  From Structure to Function in Open Ionic Channels , 1999, The Journal of Membrane Biology.

[17]  S H Chung,et al.  Test of Poisson-Nernst-Planck Theory in Ion Channels , 1999, The Journal of general physiology.

[18]  J. Lear,et al.  Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.

[19]  E. von Kitzing,et al.  (In)validity of the constant field and constant currents assumptions in theories of ion transport. , 1999, Biophysical journal.

[20]  Benoît Roux,et al.  Ion transport in a gramicidin-like channel: dynamics and mobility , 1991 .

[21]  M. Floriano,et al.  Simple electrolytes in the mean spherical approximation. III. A workable model for aqueous solutions , 1977 .

[22]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[23]  R. Eisenberg,et al.  Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations , 1995 .

[24]  Theory of activated rate processes: Coupled modes☆ , 1984 .

[25]  Variational Transition State Theory for Dissipative Systems , 1993 .

[26]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[27]  B. Eisenberg,et al.  Binding and selectivity in L-type calcium channels: a mean spherical approximation. , 2000, Biophysical journal.

[28]  Douglas Henderson,et al.  Monte Carlo study of the capacitance of the double layer in a model molten salt , 1999 .

[29]  D. Busath,et al.  Monte Carlo Simulations of the Mechanism for Channel Selectivity: The Competition between Volume Exclusion and Charge Neutrality , 2000 .

[30]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[31]  Joel L. Lebowitz,et al.  Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres , 1964 .

[32]  R. Eisenberg,et al.  Surmounting barriers in ionic channels , 1988, Quarterly Reviews of Biophysics.

[33]  P. Wolynes,et al.  The theory of ion transport through membrane channels. , 1985, Progress in biophysics and molecular biology.

[34]  E. Kitzing,et al.  The drift approximation solves the Poisson, Nernst-Planck, and continuum equations in the limit of large external voltages , 1999 .

[35]  Eberhard Von Kitzing,et al.  Integral weak diffusion and diffusion approximations applied to ion transport through biological ion channels , 1995 .

[36]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[37]  L. Xu,et al.  Permeation through the calcium release channel of cardiac muscle. , 1997, Biophysical journal.

[38]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[39]  D. Goulding,et al.  Entropic selectivity of microporous materials , 2001 .

[40]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[41]  Robert S. Eisenberg,et al.  Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..

[42]  Steven E. Laux,et al.  Revisiting the analytic theory of p-n junction impedance: improvements guided by computer simulation leading to a new equivalent circuit , 1999 .

[43]  Ph. A. Martin Sum rules in charged fluids , 1988 .

[44]  O. Andersen,et al.  Molecular determinants of channel function. , 1992, Physiological reviews.

[45]  C. Bender,et al.  Matched Asymptotic Expansions: Ideas and Techniques , 1988 .

[46]  Shin-Ho Chung,et al.  Permeation of ions across the potassium channel: Brownian dynamics studies. , 1999, Biophysical journal.

[47]  M Karplus,et al.  Molecular dynamics simulations of the gramicidin channel. , 1994, Annual review of biophysics and biomolecular structure.

[48]  Abraham Nitzan,et al.  A Dynamic Lattice Monte Carlo Model of Ion Transport in Inhomogeneous Dielectric Environments: Method and Implementation , 2000 .

[49]  Dirk Gillespie,et al.  Ion Accumulation in a Biological Calcium Channel: Effects of Solvent and Confining Pressure , 2001 .

[50]  Uwe Hollerbach,et al.  Predicting Function from Structure Using the Poisson−Nernst−Planck Equations: Sodium Current in the Gramicidin A Channel , 2000 .